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The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers
will allow for testing the fundamental properties of black holes in general relativity and to constrain
modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we
propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple
merger events. We first rescale each signal so that the target mode in each of them has the same frequency
and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to
make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the
method, we perform a study with simulated events targeting the l ¼ m ¼ 3 ringdown mode of the remnant
black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective
target mode compared to that of the single loudest event. Using current estimates of merger rates, we show
that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of
coincident data gathered at design sensitivity.
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Introduction.—The recent detection of gravitational
waves (GWs) emitted during the coalescence of binary
black holes [1,2] marked the beginning of the era of
gravitational wave astronomy, a feat that heralds a boom
of scientific discoveries to come. GWs not only provide a
new window to our Universe, they also offer a unique
opportunity to test general relativity (GR) in the dynamical
and highly nonlinear gravitational regime [3–7]. One
celebrated prediction of GR is the uniqueness, or “no-
hair,” property of vacuum black holes (BHs) [8–12]: All
isolated BHs are described by the Kerr family of solutions,
each uniquely characterized by only its mass and spin [13].
This property has many wide-ranging consequences, the
two most relevant here being (a) that the spacetime of an
isolated binary black hole (BBH) inspiral is uniquely
characterized by a small, finite set of parameters identifying
the two BHs in the binary and the properties of the orbit and
(b) that this same set of parameters uniquely determines the
merger remnant and the full spectrum of its quasinormal
mode (QNM) ringdown waveform.
This latter point forms the basis of black hole spectros-

copy, where measurements of multiple ringdown modes are
used to test this no-hair property. The idea is as follows. If
the no-hair property holds, a measurement of the (complex)
frequency of one QNM can be inverted to find a discrete set
of possibilities for the spherical harmonic (l, m) plus the
overtone number n of the mode, and the BH mass M and

spin parameter a ¼ j~Sj=M2, where ~S is the BH spin angular
momentum. However, if we have a priori information

about the objects that merged to form the perturbed BH,
then we also have information about the dominant (l,m, n)
QNM, and the measurement of its complex frequency
then provides information about the mass and spin of the
perturbed object. The measurement of any additional QNM
frequencies then overconstrains this mass and spin meas-
urement, providing independent tests of the no-hair prop-
erty. Naturally, the results of such tests can then be
leveraged to place constraints on (or to detect) non-Kerr
BHs in modified gravity theories, exotic compact objects,
the presence of exotic or unexpected matter fields, etc.
(e.g., [15–30]).
In fact, aLIGO has already given us a “zeroth-order” test

of the no-hair property from event GW150914: The
inspiral-only portion of the signal was matched to a
best-fit numerical relativity template, giving an estimate
of the mass and spin of the remnant and informing that the
waveform shortly after the peak amplitude should be
dominated by the fundamental harmonic of the ðl; mÞ ¼
ð2; 2Þ QNM (“22 mode” for short); this was consistent with
the independently measured properties of the postmerger
signal [2]. More stringent tests of the no-hair property
of the final BH require the observation of subleading
QNMs [31]. This is challenging using individual merger
events given how weak these subleading modes are relative
to the primary mode [33,34]. For example, GW150914
has a ringdown signal-to-noise ratio (SNR) of ≈7, but a
ringdown SNR upwards of 45 would have been needed
to detect the first subleading QNM [18,35]. Thus, the
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detection of such modes in individual events will require
third-generation GW detectors, as even a loud GW150914-
like event at aLIGO’s design sensitivity would have a
ringdown SNR of ≈20 [33]. On the other hand, many such
events are expected after years of operation, leading us to
consider how the information from multiple detections
could be used to extract faint signals from a population of
events.
Here then, we propose a way to coherently combine (or

“stack”) multiple, high total SNR (low ringdown SNR)
binary BH coalescence events, to boost the detectability of
a chosen secondary QNM mode. An earlier study in
Ref. [36] considered a similar problem, though their
approach effectively amounted to an incoherent assembly
of ringdown signals, where, all else being equal, one
expects N1=4 scaling of the SNR for N events, compared
to N1=2 for a coherent method (see Supplemental Material
[37] for more details). Key to achieving coherent stacking is
using the information gleaned from the inspiral portion of
each event to predict the relative phases and amplitudes of
the ringdown modes excited in the remnant.
Signal stacking.—Given a set of BBH coalescence

observations, we first select the loudest subset, here taken
to consist of the signals with a ringdown SNR in the
primary 22 mode alone of ρ22 > 8. Based on the studies in
Refs. [16,34,35,48–50], the 33 mode is typically one of the
next loudest ringdown modes. Therefore, we concentrate
on the 33 mode as a target for our analysis, although the
methodology presented here is generally applicable to other
modes, as well as other features common to a population of
GWevents. Similar to the analysis in Refs. [33,34], we use
the two-mode approximation to describe each detected
ringdown signal sjðtÞ:

sj ¼ nj þ h22;j þ h33;j; ð1Þ

where the subscript j refers to the jth event, nj is the
corresponding detector noise, and hlm;j is a ringdown mode
of the form (for t > 0)

hlm;jðtÞ ¼ Alm;je−γlm;jt sinðωlm;jt − ϕlm;jÞ: ð2Þ

For each ringdown mode, ðωlm;j þ iγlm;jÞ is its complex
frequency, Alm;j its real amplitude, and ϕlm;j its constant
phase offset.
Next, each entire jth signal is fitted to inspiral-merger-

ringdown (IMR) waveform models in GR to accurately
extract certain binary parameters that characterize the
inspiral (e.g., the individual masses and spins) [51].
Using this, we can compute the QNM frequencies, phase
offsets, and amplitudes for all modes as expected in GR
[the extrinsic parameters, such as the polarization and
inclination angles, do not affect the phase difference
between the 22 and ll modes (l > 2) [52], as we discuss
in Supplemental Material [37]]. This is a key ingredient of

our coherent mode stacking, as we need to properly align
the phase offsets ϕ33;j and frequencies ω33;j of the targeted
modes to achieve an optimal improvement in the SNR
relative to a single-event analysis.
To perform the alignment, out of the set of N events, we

arbitrarily pick one (e.g., the ith one) as the base case and
shift or rescale all others to give the same expected
secondary mode phase offset ϕ33;i ≡ ϕ33 and frequency
ω33;i ≡ ω33. Specifically, we scale and shift each signal in
time via sjðtÞ≡ sjðt=αj þ ΔjÞ, with αj ≡ ω33;j=ω33

and Δj ≡ ðϕ33;j − ϕ33Þ=ω33;j.
We are now ready to combine the individual signals. For

convenience, we work in the frequency domain, denoting
the Fourier transform of a function gðtÞ by ~gðfÞ. The
Fourier transform of Eq. (2) is given by [35]

~hlm;jðfÞ ¼ Alm;j
ωlm;j cosϕlm;j − ðγlm;j − iωÞ sinϕlm;j

ω2
lm;j − ω2 þ γ2lm;j − 2iωγlm;j

ð3Þ
with ω ¼ 2πf the angular Fourier frequency. In the
frequency domain, the secondary mode alignment of
Eq. (1) is achieved via ~sjðfÞ≡ αjeiωΔjαj ~sjðαjfÞ. We then
sum up these phase- and frequency-aligned signals to
obtain our composite signal: ~s¼P

jcj ~sj≡ ~nþ ~h22þ ~h33,

where the identification of ~n, ~h22, and ~h33 is obvious, and
we describe later how to optimize the choice of weight
constants cj. If the frequencies and phase offsets are known

exactly, ~h33 contains a single oscillation frequency ω33, and
~h22 contains a family of modes with (rescaled) frequencies
∈ ð0.623; 2=3Þω33 as the dimensionless BH spin a ranges
from 0 to 1 [16,54].
Parameter uncertainty.—Equation (1) decomposes a

measured event into a true underlying signal and detector
noise. The rescaling we have just described makes crucial
use of parameters of the signal during the IMR phase,
which can only be estimated to within some uncertainty,
and this will introduce what we call “parameter estimation
noise” nh, that we will add to the composite signal ~s. We
investigate the role of this uncertainty here, leaving detailed
derivations of some of the conclusions to Supplemental
Material [37].
Parameter uncertainty produces two main sources of

parameter estimation noise nh. The first arises from
subtracting an imperfectly estimated h22 from the data.
This noise source has frequency components quite close to
the scaled frequencies ω22;j, which (in relative terms, when
comparing to ω33;j) are far from ω33; the latter is the

frequency at which ~h33 peaks, and, thus, the impact of this
noise source on ρ33 is small. The second noise source is due
to the imperfect scaling and alignment of the 33 mode,
which is resonant at frequency ω33.
Let us denote any variable with a prime as the maximum

likelihood estimator, i.e., Y 0 ¼ Y þ δY, with Y the true
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(scaled or not) value and δY the corresponding uncertainty
in its estimation. With this, the time domain, estimated
composite GW signal is

h22
0 ¼ Im

�X
j

A0
22;je

iðΛ0
22;jt−Φ

0
22;jÞ

�
;

h33
0 ¼ Im

�
eiðω33t−ϕ33Þ

X
j

A0
33;je

−Γ0
33;jtþiðδΩ33;jt−δΦ33;jÞ

�
; ð4Þ

where Ωlm;j þ iΓlm;j ≡ ðωlm;j þ iγlm;jÞ=αj ≡ Λlm;j and
Φlm;j ≡ ϕlm;j − Δjωlm;j are the scaled frequencies and
phase offsets, respectively, and we have absorbed the cj
coefficients into rescaled amplitudes Alm;j. The parameter
estimation noise for each (l, m) mode is
nhlm ¼ h0

lm − hlm, which is approximately given by

nhlm ≈ Im

�X
j

½δAlm;jeiðΛlm;jt−Φlm;jÞ

þAlm;jeiðΛlm;jt−Φlm;jÞðeiðδΛlm;jt−δΦlm;jÞ − 1Þ�
�
: ð5Þ

In the subsequent analysis, we assume that δA, δΛ, and δΦ
are independent, normal random variables in the proba-
bility space of n [55].
We are unaware of any closed-form, analytic formula in

the literature that describes parameter uncertainties given
the SNR of a particular detection, even when the waveform
model is known analytically. Let us then assume one
characterizes the data with an inspiral-merger-ringdown
model, where the ringdown contains the 22 and 33 modes.
These ringdown modes depend (of course) on the ringdown
parameters and the underlying gravitational theory gov-
erning the dynamics, though in our analysis we are
assuming GR as the theory and hence they fundamentally
depend on the parameters of the inspiral. The uncertainty
in the inspiral parameters depends inversely on the total
SNR ρ of the observation, as can be shown via a simple
Fisher analysis, which then also provides the uncertainty
of the ringdown parameters to within a factor given by
the propagation of errors from the inspiral to ringdown
parameters. Guided by an estimate of this propagation
factor as outlined in Supplemental Material [37], together
with aLIGO’s parameter estimation errors for event
GW150914 [1,6,56], we estimate the variance of mode
parameter uncertainties as σΦii;j

¼ 0.3 × ð20=ρjÞ rad
(i ¼ 1, 2) and use the QNM frequency formula and the
formula for Aii;j to propagate the mass uncertainty of event
GW150914 to obtain estimates for σΛii;j

and σAii;j
.

Hypothesis testing.—With the combined signals, we
perform a Bayesian hypothesis test [35] to derive the
conditions of detectability of the 33 mode. In particular,
we want to test the following two nested hypotheses:

H1∶~y≡ ~s − ~h22 ¼ ~nþ A ~h33;

H2∶~y≡ ~s − ~h22 ¼ ~n: ð6Þ

For convenience, we have introduced an overall amplitude
factor A such that when A ≠ 0 the 33 mode is nonzero, and
vice versa. The probability that the observed data are
consistent with H1 is

PA ∝ exp

�
−
Z

∞

0

df
2j~y − A ~h33j2

Sn

�
; ð7Þ

with Sn ¼
P

jc
2
jSnjðαjfÞαj the one-sided and shifted noise

spectrum (with Snj the unscaled detector noise spectral
density for each detection).
With the above probability function, we can derive the

maximum likelihood estimator for A and then perform a
generalized likelihood ratio test (GLRT) [35]. As we
explain in detail in Supplemental Material [37], parameter
uncertainties shift the mean and expand the variance of the
distribution of the likelihood ratio between the two hypoth-
eses. The former effectively reduces the 33 mode to

H33 ¼
�
1þ 1

2

��hnh33 jnh33i
hh33jh33i

	
−
�hh33jnh33i2
hh33jh33i2

	��
hh33i

ð8Þ

(see Supplemental Material [37] for the definition of the
inner product hji and explicit form of hh33i), while the latter
directly reduces the SNR of the 33 mode by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2p

q
,

where σ2p is the variance of hh33jnh22 − nh33i½hh33jh33i�−1=2.
Thus, the requirement to favor H1 over H2 is

ρ33 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihH33jH33i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2p

q ≥ ρcrit; ð9Þ

where ρcrit is related to the false-alarm rate Pf and detection
rate Pd in the GLRT. If we choose Pf ¼ 0.01 and
Pd ¼ 0.99, ρcrit would be 4.65, which is close to the
threshold 5 set in Ref. [34]. Here we also pick ρcrit ¼ 5.
Assessing observational prospects.—To investigate the

detectability of the 33 mode after coherent stacking,
we employ a Monte Carlo (MC) sampling of possible
events, repeating each sampling 100 times to accumulate
statistics. Given the predictions derived from the recent GW
detections [6], we assume a uniform merger rate of
quasicircular inspirals of 40 Gpc−3 yr−1 in comoving
volume. For simplicity, we assume the BHs are nonspin-
ning (see Supplemental Material [37] for the effect of BH
spins on the relative phase difference between the 22 and 33
modes) with masses uniformly distributed ∈ ½10–50�M⊙
and employ the empirical fitting formula of Ref. [58] to
connect the initial BH masses to the final mass and spin of
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the remnant. We compute the total SNR for each individual
event using the sky-averaged IMRPhenomB waveform
model [59], choose the amplitude of the primary 22 mode
to match the ringdown SNR in Eq. (1) of Ref. [33], and set
the amplitude of the 33 mode following the fitting formula
for A33=A22 in Ref. [48]. We adopt the zero-detuned, high-
power noise spectral density of aLIGO at design sensitivity
[60] for SnjðfÞ. For each MC sampling, we randomly
distribute merger events within redshift z ¼ 1 (with H0 ¼
70 km s−1 Mpc−1, Ωm ¼ 0.3) over a one-year observation
period and, as discussed earlier, select only those with
ρ22 > 8. Each MC sampling contains about 1000–2000
events, giving rise to 40–65 events with ρ22 > 8, which is
roughly 2 times higher than samples taken using population
synthesis models [33]. In computing the stacked signal
SNR of Eq. (9), it suffices to use a small number (15) of
loudest events in each sample [61], and we determine the
weight constants cj in the sum to maximize the SNR using
the downhill simplex optimization method [62,63].
The resulting distribution (Fig. 1) indicates that there is

roughly a 28% chance for aLIGO to resolve at least one 33
mode from a single event in one year of data at design
sensitivity. After stacking, the probability of a collective
33-mode detection increases to 97%. These probabilities,
of course, depend on the actual merger rate, as well as
additional factors we have not taken into account here,
including initial BH spins and precession. For example, if
we take the more pessimistic event rate estimate of
13 Gpc−3 yr−1 [6], the probability for detection with a
single event drops to ∼12%, while the collective mode
detection probability drops to 50% (still using 15 events).
In theory, all else being equal, coherent stacking should

provide a
ffiffiffiffi
N

p
scaling of the SNR. Here N ¼ 15, so the

ideal scenario would see a factor of ∼3.8 improvement in
the collective ρ33 relative to a single event. In our MC
realizations, we achieved improvement factors of between
1.3 and 3.1 relative to the loudest event over the set of 100
realizations (see Supplemental Material [37] for some
additional comments and figures about the distribution)
[64]. The primary reason for this is simply the nonuniform
nature of the sampling, where it is typically the small
handful of loudest events that contribute most to the
collective SNR. The parameter uncertainty noise has a
smaller impact, in particular, because the fainter events that
have larger uncertainties are weighted less in the sum.
Discussion.—We have presented a coherent mode

stacking method that uses multiple high-quality BBH
coalescence detections to obtain better statistics for BH
spectroscopy. Crucial to the method’s success is the
appropriate alignment of the phase and frequency from
different signals. For the class of BBH merger events we
have targeted here, this is achievable for two primary
reasons: (i) the no-hair properties of isolated BHs in GR
imply that a binary system is likewise described by a small
set of parameters, and (ii) the expected events that aLIGO
will detect where the primary ringdown mode is visible will
also have an inspiral detectable with a high SNR, and this
can be used to estimate the parameters in (i) with enough
accuracy to predict the initial phases and amplitudes of
subdominant ringdown modes. In this first, proof-of-prin-
ciple study, we have demonstrated that the detection of a
collective secondary BH ringdown mode through stacking
is likely with the current “advanced” generation of ground-
based GW detectors, even if the corresponding modes are
not loud enough to be detected in any single-event analysis.
There are many avenues for future work and extensions

of this method, including using merger rates predicted by
population synthesis models as done in Ref. [33], using
different mass distribution functions for BHs [65], consid-
ering other ringdown modes (such as the 44 and 21 modes
[33,34], or even the fundamental 22 mode in a population
of low SNR events where it is not individually detectable),
investigating the (precessional) spin effect to the phase of
secondary modes, and also targeting secondary inspiral
modes. Furthermore, this method could be adapted to
constrain or search for other small-amplitude features that
might be shared by a population of events, e.g., common
parameterized post-Einsteinian-like [66] corrections to the
inspiral phase of the mergers, or common equation-of-state-
discriminating frequencies excited in hypermassive rem-
nants of binary neutron star mergers [67–77]. In this latter
example, one issue in adapting the coherent stacking
method would be achieving phase alignment, due to the
challenge in accurately calculating the details of the matter
dynamics postmerger. If the phases cannot be aligned,
incoherent power stacking could still in theory achieve a
N1=4 SNR scaling (see Supplemental Material [37] for
more details).

FIG. 1. A histogram of the SNR of the 33 mode, ρ33, from 100
randomly sampled sets of detections, assuming a one-year data
acquisition time for aLIGO and a uniform comoving merger rate
of 40 Gpc−3 yr−1 [6]. We present the statistics of the largest ρ33
event from each set (orange bins) and those with the stacked SNR
using only the 15 largest SNR events from each set (blue bins).
The 33 mode is detected if ρ33 is above the detection threshold of
ρ33 ¼ 5 (red dashed line). Refer to the main text for more details.
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