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The one-dimensional symmetric exclusion process, the simplest interacting particle process, is a lattice
gas made of particles that hop symmetrically on a discrete line respecting hard-core exclusion. The system
is prepared on the infinite lattice with a step initial profile with average densities ρþ and ρ− on the right and
on the left of the origin. When ρþ ¼ ρ−, the gas is at equilibrium and undergoes stationary fluctuations.
When these densities are unequal, the gas is out of equilibrium and will remain so forever. A tracer, or a
tagged particle, is initially located at the boundary between the two domains; its position Xt is a random
observable in time that carries information on the nonequilibrium dynamics of the whole system. We derive
an exact formula for the cumulant generating function and the large deviation function of Xt in the long-
time limit and deduce the full statistical properties of the tracer’s position. The equilibrium fluctuations of
the tracer’s position, when the density is uniform, are obtained as an important special case.
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The collective dynamics of a complex system can be
probed by attaching a neutral tag to a particle, which does not
alter its interactions with the environment, and bymonitoring
the position of the tagged particle in time. This technique is a
powerful tool to study flows in material sciences, biological
systems, and even social groups (see e.g., [1–4] and refer-
ences therein). The averaged trajectory of a tracer carries
information on the overall motion of the fluid, whereas its
fluctuations are sensitive to the statistical properties of the
medium. The canonical example is the Brownianmotion of a
grain of pollen immersed inwater at thermal equilibrium, and
the simplest model for this diffusion is given by independent
random walkers symmetrically hopping on a lattice; the
position of any walker, as a function of time t, spreads as

ffiffi
t

p
.

In the presence of weak interactions, diffusive behavior
generically prevails, but the amplitude of the spreading,
measured by the diffusion constant, is a function of the total
density of particles [1,5,6].
If the interactions induce long-range correlations either in

space or time direction, or if the environment is out of
equilibrium (by carrying some internal currents), the motion
of a tagged particle can exhibit unusual statistical properties
such as anomalous diffusion and/or non-Gaussian fluctua-
tions. For example, a tracer trapped in a linear array of
convection rolls spreads only as t1=3 with time [7,8].
Correlations are usually enhanced in low-dimensional sys-
tems such as narrow quasi-one-dimensional channels in
which the order amongst the particles is preserved because
of steric hindrance. For such a single-file motion, the typical
displacementXt of a tracer at large times grows as t1=4, which
is much slower than the usual

ffiffi
t

p
law, regardless of the

precise form of the interaction. However, collective diffusion
of local density fluctuations remains normal and behaves asffiffi
t

p
. Similarly, the time-integrated current at a given location

of a single-file channel also displays t1=4 fluctuations. This
anomalous single-file diffusion has been demonstrated in
various experiments involving different types of physical
systems such as zeolites, capillary pores, carbon nanotubes,
or colloids [9–15]. Single-file diffusion is also discussed in
numerous theoretical papers at various levels of physical
intuition [16] or mathematical rigor [5,17,18].
One of the simplest models in nonequilibrium statistical

physics is the symmetric exclusion process (SEP) [17], a
lattice gas of particles performing symmetric random walks
in continuous time and interacting by hard-core exclusion:
each particle attempts to hop with rate unity from its
location to an empty neighboring site; double occupancy of
a site is forbidden. Thanks to the wealth of analytical
knowledge accumulated during the last few decades, this
process and its variants are used as paradigms in non-
equilibrium statistical mechanics [6,19–22]. In a one-
dimensional lattice, the SEP is a pristine model of a
single-file diffusion, amenable to quantitative analysis. In
the equilibrium case with uniform density ρ, the variance of
the position Xt of a tagged particle initially located at the
origin is given in the long-time limit by [5,17]

hX2
t i ¼

2ð1 − ρÞ
ρ

ffiffiffi
t
π

r
: ð1Þ

It has also been proved that the rescaled position ðXt=t1=4Þ
satisfies a central limit theorem and converges to a frac-
tional Brownian motion with Hurst index 1=4 [17,23].
The full distribution of Xt and its higher cumulants are,

however, not known. The tracer, being immersed in a
fluctuating environment far from equilibrium, can display
large and nontypical excursions. Such rare events are
quantified by a large deviation function [24,25]. Large
deviation functions appear as appropriate candidates for
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macroscopic potentials under nonequilibrium conditions.
Moreover, the fluctuation theorem, which is one of the few
exact results valid far from thermodynamic equilibrium,
can be stated as a property of the rate function [26,27] when
the large deviation principle holds (see, however, [28]
for an example for which the fluctuation theorem is true,
but there is no large deviation principle). In present day
statistical physics, large deviations play an increasingly
important role [21,22,29,30].
Recently, the large deviation principle for the tracer

position has been proved rigorously [31]: when t → ∞,
there exists a large-deviation function ϕðξÞ such that

Prob

�
Xtffiffiffiffi
4t

p ¼ −ξ
�
∼ exp½− ffiffi

t
p

ϕðξÞ�: ð2Þ

Note the prefactor
ffiffi
t

p
in the exponent; for noninteracting

particles, the prefactor would be t (see Supplemental
Material [32]). Alternatively, one studies the characteristic
function of Xt, which behaves as

hesXti ∼ e−
ffiffi
t

p
CðsÞ; when t → ∞: ð3Þ

The Taylor expansion of the cumulant generating function
CðsÞ with respect to s generates all the cumulants of Xt.
The functions CðsÞ and ϕðξÞ are related by Legendre
transform [24,25],

CðsÞ ¼ min
ξ
½2sξþ ϕðξÞ�: ð4Þ

Each of these functions carries information on the long-
time behavior of the process. Although the SEP has been
studied for more than 40 years, analytic formulas for these
functions are not yet known.
In this Letter, we shall present an exact formula for the

large-deviation function ϕðξÞ in (2) of the tracer position in
the SEP. As an initial condition, we prepare a step density
profile with an average density ρþ on the right of the origin
and ρ− on the left. (See the right figure in Fig. 2.) In a
parametric representation, ϕðξÞ is given by

ϕðξÞ ¼ μðξ; λ�Þ;
∂μðξ; λ�Þ

∂λ ¼ 0; ð5Þ

where the second equation defines implicitly λ� ¼ λ�ðξÞ,
and μðξ; λÞ is

μðξ; λÞ ¼
X∞
n¼1

ð−ωÞn
n3=2

Að ffiffiffi
n

p
ξÞ þ ξ log

1þ ρþðeλ − 1Þ
1þ ρ−ðe−λ − 1Þ :

ð6Þ
Here, ω ¼ rþðeλ − 1Þ þ r−ðe−λ − 1Þ, with r� ¼
ρ�ð1 − ρ∓Þ and

AðξÞ ¼ e−ξ
2

ffiffiffi
π

p þ ξ½1 − erfcðξÞ�; ð7Þ

where the complementary error function is defined by
erfcðzÞ ¼ ð2= ffiffiffi

π
p Þ R∞

z e−u
2

du. This is the central result in
this Letter. For ξ ¼ 0, we have Að0Þ ¼ 1=

ffiffiffi
π

p
, and μð0; λÞ

reduces to the expression found in [33] for the current
fluctuations in the SEP at the origin. Our formula (6)
generalizes it and leads us to a complete analytic descrip-
tion of the statistical properties of the tracer in the long-time
limit. The figure is also easily drawn, see Fig 1.
To explain the meaning of μ and the derivation of our

formula, we first recall the setup of the asymmetric simple
exclusion process (ASEP), see Fig. 2. The position of a
particle is labeled by an integer x ∈ Z. Particles hop to the
right and to the left with rates p and q, respectively.
The asymmetry parameter is τ ¼ p=q, with 0 ≤ τ ≤ 1. The
symmetric model, which is the main target of our study,
corresponds to p ¼ q ¼ τ ¼ 1. We adopt the convention
that a current flowing from right to left is counted positively
[34,35]. The initial condition is the step density profile with
ρþ on the right of the origin and ρ− on the left (and typically
ρþ ≥ ρ−). The stationary case corresponds to ρþ ¼ ρ− ¼ ρ.
We emphasize that the initial profile displays randomness:
statistical averages will be taken both over the dynamics
and the initial conditions. The tracer is defined to be the
particle in the region x > 0, which is initially the closest to
the origin. (For the t → ∞ limit studied in this Letter, this is
equivalent to putting the tracer at the origin at t ¼ 0.)
Its position at time t is denoted by Xt.
In order to study the position of the continuously moving

tracer, it is useful to relate Xt to a local observable. Let Nt
denote the integrated current through the bond (0,1) for the
duration ½0; t�; i.e., Nt is equal to the total number of
particles having hopped from 1 to 0 minus the total number
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FIG. 1. The large deviation function ϕðξÞ of the tracer position
in the SEP (solid curve) for the case ρþ ¼ 0.3, ρ− ¼ 0.15.
The one for the reflective Brownian particles (14) with the same
ρ� is also shown (dashed curve).
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-
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FIG. 2. ASEP. Left: Particles hop asymmetrically on the lattice
under volume exclusion. Right: Step initial condition with
densities ρþ (respectively ρ−) to the right (respectively left).
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of particles having hopped from 0 to 1 during the time
interval ½0; t�. We define the following quantity [36,37]:

Nðx; tÞ ¼ Nt þ

8>><
>>:

þP
x
y¼1 ηyðtÞ; x > 0;

0; x ¼ 0;

−
P

0
y¼xþ1 ηyðtÞ; x < 0;

ð8Þ

where ηxðtÞ ¼ 1 (respectively 0) when the site x is occupied
(respectively empty) at time t. We recall that the observable
hðx; tÞ ¼ Nðx; tÞ − x=2 is the local height function appear-
ing when the ASEP is mapped to a growth process
[6,38,39].
Using particle number conservation, one can verify [32]

that the tagged particle position Xt and Nðx; tÞ satisfy

P½Xt ≤ x� ¼ P½Nðx; tÞ > 0�: ð9Þ

This identity will allow us to relate the statistical properties
of the tracer Xt with those of the height Nðx; tÞ and, in
particular, to express the cumulant generating function and
the large deviation function of Xt in terms of the corre-
sponding quantities for Nðx; tÞ.
In the long-time limit, the characteristic function of

Nðx; tÞ behaves as

heλNðx;tÞi ∼ e−
ffiffi
t

p
μðξ;λÞ; ð10Þ

with ξ ¼ −ðx= ffiffiffiffi
4t

p Þ, and its cumulants are obtained by
expanding μðξ; λÞ with respect to λ. This μðξ; λÞ is nothing
but the one in (6). From the identity (9), we see [32] that the
large deviation functions of Xt is given through the
characteristic function of Nðx; tÞ as ϕðξÞ ¼ maxλμðξ; λÞ,
which is equivalent to (5).
We now investigate some properties of the above

formulas and extract some concrete results from them.
We also retrieve and generalize some results previously
known in certain particular cases.
The tracer’s large deviation function ϕðξÞ satisfies a

version of the fluctuation theorem [26,27],

ϕðξÞ − ϕð−ξÞ ¼ 2ξ log
1 − ρþ
1 − ρ−

: ð11Þ

The fluctuation theorem is a symmetry relation that
originates from an underlying time-reversal invariance. It
implies, in particular, that the Einstein relation is true for
the SEP [40]. The proof of (11) is based on the fact that
λ�ð−ξÞ ¼ logðr−=rþÞ − λ�ðξÞ [32]. We also note that,
while the fluctuation theorems have been established
mainly for a large system in the infinitely late time, ours
is for a system on the infinite lattice and for a large time.
Explicit formulae for the first few cumulants of Xt can be

obtained by substituting an expression of ϕðξÞ in (5) into
(4). For a stationary initial condition, ρþ ¼ ρ− ¼ ρ, we

have calculated the first few cumulants: the variance is
given by (1), and at the fourth order, we find

hX4
t icffiffiffiffi
4t

p ¼ 1−ρffiffiffi
π

p
ρ3

�
1− ð4− ð8−3

ffiffiffi
2

p
ÞρÞð1−ρÞþ12

π
ð1−ρÞ2

�

(the subscript c indicates a cumulant), in agreement with
calculations based on the macroscopic fluctuation theory
(MFT) [41]. Considering the MFT is a description at the
level of hydrodynamics, this coincidence provides a highly
nontrivial check of the MFT. The procedure can be carried
out to higher orders in s [32].
For nonequilibrium initial conditions, ρþ > ρ− > 0, the

tracer drifts away from the origin as

hXtiffiffiffiffi
4t

p ¼ −ξ0; ð12Þ

where ξ0 is the unique solution of

2ξ0ρ− ¼ ðρþ − ρ−Þ
Z

∞

ξ0

erfcðuÞdu: ð13Þ

Solving (5) around ξ0 leads to the variance of the tracer

VarðXtÞ ¼
4Kðρþ − ρ−Þ2Aðξ0Þ

ffiffi
t

p
½ρþerfcðξ0Þ þ ρ−erfcð−ξ0Þ�2

;

with

K ¼ ρ3þ þ ρ3− − 3ρ2þρ− − 3ρþρ2− þ 4ρþρ−
ðρþ þ ρ−Þðρþ − ρ−Þ2

−
Að ffiffiffi

2
p

ξ0Þffiffiffi
2

p
Aðξ0Þ

:

In the special case ρ− ¼ 0, the tracer is the left-most
particle of a SEP expanding in a half-empty space, and
finding the distribution of Xt becomes identical to a
problem in extreme value statistics. By using the main
formula (6), it can be shown that hXti ∼

ffiffiffiffiffiffiffiffiffiffiffi
t log t

p
and

VarðXtÞ ∼ ðt= log tÞ. The tracer follows a Gumbel law,
which is well known to appear for independent walkers, in
spite of interaction effects in the SEP [17,42].
In the low density limit, ρ−, ρþ ≪ 1, the SEP becomes

equivalent to an ensemble of reflecting Brownian particles
[17]. This system can be viewed as independent Brownian
motions that exchange their labels when they collide and
has been solved exactly using various techniques
[16,41,43–45]. Retaining only the first order terms in ρ�
in the formula (6) and using (5), we obtain the large
deviation of a tracer in the reflecting Brownian limit,

ϕðξÞ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρþΞðξÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ−Ξð−ξÞ

p
g2; ð14Þ

where ΞðξÞ ¼ R
∞
ξ erfcðuÞdu. This generalizes the known

result in the uniform case ρþ ¼ ρ− [16,41,43,44]. This
large deviation function is also drawn in Fig. 1; by
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comparing it to the one for the SEP, the effect of the
interactions among particles of the SEP is clearly seen.
In the last part of this Letter, we outline the derivation of

the main formula (6). The strategy is to find exact
expressions for all the moments of Nðx; tÞ and then
construct the cumulant generating function μðξ; λÞ. The
time evolution equations for the moments of Nðx; tÞ form a
hierarchy of coupled differential equations that must be
solved simultaneously. This seems to be a daunting task.
Our strategy is to make a detour through the ASEP, with

τ < 1, for which the observable Nτðx; tÞ, defined in (8),
satisfies a remarkable self-duality property [35–37]. For
x1 < x2 < … < xn, n-point correlations of the type

ϕðx1;…; xn; tÞ ¼ hτNτðx1;tÞ…τNτðxn;tÞi
follow the same dynamical equations as the ASEP with a
finite number n of particles located at x1;…; xn. Using the
fact that the ASEP with n particles is solvable by Bethe
ansatz, these τ correlations can be expressed as a multiple
contour integral in the complex plane [34,35,46]. For the
step initial condition with the densities ρ�, we can write

hτnNτðx;tÞi ¼ τ−nx2τnðn−1Þ=2
Yn
i¼1

�
1 − r−

τirþ

�

×
Z

� � �
Z Y

i<j

zi − zj
zi − τzj

×
Yn
i¼1

Fx;tðziÞ
ð1 − zi

τθþ
Þðzi − θ−Þ

dzi; ð15Þ

with r� defined below (6), θ� ¼ ρ�=ð1 − ρ�Þ and

Fx;tðzÞ ¼
�

1þ z
1þ z=τ

�
x
e−

qð1−τÞ2z
ð1þzÞðτþzÞt:

The contour of zi includes −1; τθþ and fτzjgj>i but not −τ,
θ−; integrations are performed from zn down to z1, see
Fig. 3. This contour formula is a generalization of the
ρ− ¼ 0 case studied in [35]. See also a recent related work
[47]. The symmetric limit, ϵ ¼ 1 − τ → 0, is performed
using the identity,

Xn
j¼0

ð−1Þj
�
n
j

�
hτðn−jÞNτi ¼ hð1 − τNτÞni ¼ ϵnhNni þ oðϵnÞ;

that relates the τmoments ofNτðx; tÞ in the ASEP to the nth
moment of the observable Nðx; tÞ in the SEP. (Note this is

possible because we take the symmetric limit for finite x
and t.) Each term on the left-hand side is given by a
complex contour integral that has to be expanded with
respect to ϵ. This is achieved first by evaluating the residues
of the contour integrals at the poles in the vicinity of θþ,
leading to a formula in the form,

hð1 − τNτÞni ¼
Xn
k¼0

μn;kðϵÞJkϵk;

where the combinatorial coefficients μn;kðϵÞ contain the
contributions of the residues and the Jk’s are k-fold
integrals localized around the origin. One can find explicit
recursive relations for the μn;kðϵÞ’s, from which a formula
for the nth moment of Nðx; tÞ and for its nth cumulant are
obtained. Then the large t asymptotics of the Jk’s are
extracted, which finally leads to expressions for the
cumulants in the long-time limit,

hNðx; tÞnicffiffi
t

p ∼
Xn
l¼1

αn;lðrþ; r−Þffiffi
l

p Ξð−
ffiffi
l

p
ξÞ − 2αn;lð1; 0Þξρlþ;

ð16Þ
where ΞðξÞ was defined below (14) and

αn;lða;bÞ
ðl−1Þ! ¼ð−1Þl

X
P

jlj¼nP
lj¼l

n!Q
n
j¼1 lj!

Yn
j¼1

�
aþð−1Þjb

j!

�
lj
: ð17Þ

Finding the general structure of the moments and the
cumulants is the key step to obtain our main result and
its proof is highly nontrivial (the full details of the
derivation will be given in [48]). Finally, taking the
generating function of the cumulants leads to (6).
In this Letter, we obtain the exact formula for the large

deviations of a tracer in the one-dimensional symmetric
exclusion process. This formula yields all the cumulants of
the tracer position in the long-time limit. This answers a
problem that has eluded solution for years [17,31]. Our
results are valid both when the system is at equilibrium with
uniform density and when the system is out of equilibrium,
starting with a step density profile, the tracer being initially
located at the boundary between the two domains of
unequal density. Some of our formulas for the cumulants
are prone to experimental tests, e.g., using colloidal
particles [13]. They can also be used as benchmarks for
numerical methods to evaluate large deviations, such as the
one proposed in [49].
The derivation of the central formula (6) uses the

powerful mathematical arsenal of integrable probabilities
developed to solve the one-dimensional Kardar-Parisi-
Zhang (KPZ) equation, the ASEP, and related asymmetric
models [35,46,50–53]. Generalizations of the ideas and
techniques in this Letter will allow us to reveal various
intricate properties of the SEP and related symmetric
models, which would have been difficult with other means.

0-1 - - +

z1, , zn znzn

zn-1

z1

FIG. 3. The integration contours in (15).
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Infinite systems out of equilibrium keep, in general, the
memory of the initial conditions [16]. For the models in the
KPZ universality class, it has been well established that
different initial conditions can lead todifferent statistical laws
in the long-time limit [39,53–55]. This must also be true in
the tagged particle problem in the SEP and one would like to
studymore general set-ups than the step profile. In particular,
instead of taking averages over an ensemble of fluctuating
initial step profiles and over the dynamics (annealed case),
one could start with a deterministic initial configuration and
average only over the history of the process (quenched case).
For the latter case, even less is known [33,44,45] compared
with the former, but new progress is expected to be achieved
by extending our approach, combined with results for the
ASEP, e.g., [56].
Finally, we would like to relate our derivation to the

macroscopic fluctuation theory (MFT) [21,30], one of the
most promising approaches to study systems far from
equilibrium. The MFT is based on a variational principle
that determines the optimal path that produces a given
fluctuation, leading to two coupled nonlinear Euler-
Lagrange equations. For reflecting Brownian particles, these
equations can be linearized and solved, leading to the large
deviations of the tracer [45]. However, for the symmetric
exclusion process, the MFT equations are, for the moment,
intractable. Our exact calculations may give some hint to
solve the MFT equations for this nonlinear case.
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