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We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output
von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states
with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that
affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse
theorems for both the triple trade-off region and the capacity region for broadcast communication of the
Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power
inequality that plays a key role in classical information theory. Our proof exploits a completely new
technique based on the recent determination of the p — g norms of the quantum-limited amplifier
[De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

DOI: 10.1103/PhysRevLett.118.160503

Signal attenuation and noise unavoidably affect electro-
magnetic communications through metal wires, optical
fibers, or free space. Since the energy carried by an
electromagnetic pulse is quantized, quantum effects must
be taken into account [1]. They become relevant for low-
intensity signals, such as for satellite communications,
where the receiver can be reached by only a few photons
for each bit of information [2]. In the quantum regime, signal
attenuation and noise are modeled by phase-covariant
quantum Gaussian channels [3-7] (sometimes also called
gauge-covariant quantum Gaussian channels).

The maximum achievable communication rate of a
channel depends on the minimum noise achievable at its
output that is quantified by the output von Neumann
entropy [5,8]. We prove in the case of one mode the
long-standing constrained minimum output entropy
(CMOE) conjecture [9-14] stating that Gaussian thermal
input states minimize the output entropy of phase-covariant
quantum Gaussian channels among all the input states with
a given entropy.

The classical counterpart of the CMOE conjecture states
that Gaussian input probability distributions minimize the
output Shannon differential entropy of classical Gaussian
channels among all the input probability distributions with
a given entropy, and it is implied by the entropy power
inequality (EPI) [15,16]. The EPI is fundamental in
classical information theory. It is necessary to prove the
optimality of Gaussian encodings for the transmission of
information through the classical broadcast and wiretap
channels [17,18], and it provides bounds for the informa-
tion capacities of non-Gaussian classical communication
channels [19] and for the convergence rate in the central
limit theorem [20]. A quantum generalization of the proof
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of the EPI permitted the proof of the quantum EPI (qEPI)
[21-25], which provides a lower bound to the output von
Neumann entropy of quantum Gaussian channels in terms of
the input entropy. However, the qEPI is not saturated by
quantum Gaussian states; hence, it is not sufficient to prove
the CMOE conjecture. The MOE conjecture was first proven
in a completely different way in the version stating that
pure Gaussian input states minimize the output entropy of
any phase covariant and contravariant quantum Gaussian
channel among all the possible pure and mixed input states
[7,26-29]. This fundamental result permitted the determi-
nation of the classical communication capacity of these
channels [30] and the proof of the additivity of this capacity
under the tensor product [7]. This additivity implies that
this capacity is not increased by entangling the inputs. The
CMOE conjecture was then proven for the one-mode
quantum-limited attenuator [31,32] using Lagrange multi-
pliers. Unfortunately, the same proof does not work in the
presence of amplification or noise.

In this Letter we prove the CMOE conjecture for any
one-mode phase-covariant quantum Gaussian channel.
This result implies the CMOE conjecture also for one-
mode phase-contravariant quantum Gaussian channels (see
Ref. [33], Sec. VI). Our result both extends the EPI to the
quantum regime and generalizes the unconstrained mini-
mum output entropy conjecture of Refs. [7,27-29] that has
permitted the determination of the classical capacity of any
phase-covariant quantum Gaussian channel [30] (see also
Ref. [34]). Our result is necessary to prove the converse
theorems that guarantee the optimality of Gaussian encod-
ings for two communication tasks involving the quantum-
limited amplifier [35]. The first is the triple trade-off coding
[36], which consists in the simultaneous transmission of
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both classical and quantum information and generation of
shared entanglement, or in the simultaneous transmission
of both public and private classical information and
generation of a shared secret key. The second is broadcast
communication [37,38], i.e., classical communication with
two receivers.

Our proof exploits a completely new technique that links
the CMOE conjecture to the p — ¢ norms [7,39], and is
based on the result stating that Gaussian thermal input states
saturate the p — ¢ norms of the one-mode quantum-limited
amplifier [40]. This technique can be used to determine the
minimum output entropy for fixed input entropy for any
quantum channel whose p — ¢ norms are known.

We start by presenting quantum Gaussian channels and
then prove the CMOE conjecture. We refer the reader to the
Supplemental Material for some technical details [41].

Bosonic Gaussian systems.—We consider the Hilbert
space of one harmonic oscillator, or one mode of the
electromagnetic radiation. The ladder operator a satisfies
the bosonic canonical commutation relation [4, a] = f, and
the Hamiltonian N = 4% counts the number of excitations,
or photons. The density matrix of the thermal Gaussian
state with average energy E > 0 is

oe =3 i (gog) Wl

n=0

where the Fock states |n) are the eigenvectors of N. Its von
Neumann entropy is

S(ép) = (E+1)In(E+1)—EE = g(E). (2)

Phase-covariant and -contravariant quantum Gaussian
channels [42] are the quantum channels that preserve the
set of thermal Gaussian states. Phase-covariant quantum
Gaussian channels are constituted by quantum attenuators,
quantum amplifiers, and additive-noise channels.

The quantum attenuator &, ; of transmissivity 0 <1 <1
and thermal energy E > 0 mixes the input state p with
the thermal Gaussian state @ of an environmental quantum
system B through a beam splitter of transmissivity A

(case (C) of Ref. [42] with k = v/2 and Ny =E):

E1.6(p) = TrgU,(p ® dp)U]). (3)
Here, Trp[- - -] is the partial trace over the environment B,
U, = exp|(a'h — ab") arccos v/A] (4)

is the unitary operator implementing the beam splitter, and
b is the ladder operator of B (see Sec. I. IV.II of Ref. [43]).
For E = 0 the state of the environment is the vacuum and
the attenuator is quantum limited. We put &, = &, for
simplicity. The action of the quantum attenuator on thermal
Gaussian states is [5]

51,E<6)E’) = (‘A)ﬁE’-&-(l—ﬂ)E- (5)

The quantum amplifier A, ; of amplification parameter
k > 1 and thermal energy E > 0 performs a two-mode
squeezing on the input state p and the thermal Gaussian
state @ of B (case (C) of Ref. [42] with k = \/k and
Ny =E):

Ace(p) = Trg[U(p ® p) U, (6)
where
U, = exp[(a*h’ — a b)arccoshv/x] (7)

is the squeezing unitary operator. Again, for £ =0 the
amplifier is quantum limited and we put A, o = A, for
simplicity. The action of the amplifier on thermal Gaussian
states is

A p(Dp) = Ocpr i (-1)(E+1)- (8)

The additive-noise channel N adds E > 0 to the energy
of the input state, and can be expressed as a quantum-
limited amplifier composed with a quantum-limited attenu-
ator (case (B,) of Ref. [42] with N. = E):

Ng = AE+1°51/E+1- 9)

Its action on the thermal Gaussian states is
NE(QA)E’) = Op - (10)
Any phase-covariant quantum Gaussian channel can be

expressed as a quantum-limited amplifier composed with a
quantum-limited attenuator [7,26-28]:

Enp = Aoy, Acp = Aoy, (11)
where
A :A "= (1-2)E+1
G-nEs1 <~ U-HE+L
1 1
" __ "n__ _
i T T K((l K)E—f—l). (12)

The phase-contravariant channel /I,QE is the weak
complementary of the amplifier A,z (case (D) of

Ref. [42] with k = vk —1 and Ny = E):

Ac(p) = Tra[U(p ® dp)Uf]. (13)

where U, is the two-mode squeezing unitary defined
in Eq. (7) and where now the partial trace is performed
over the system A. The action of .[lm £ on thermal Gaussian
states is [5]
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AK.E(C?)E’> = d)(K—l)(E/+]>+KE' (14)

Gaussian Optimization.—The CMOE conjecture for the
quantum-limited attenuator was proven in Ref. [31].

Theorem I (CMOE conjecture for the quantum-limited
attenuator [31]).—Gaussian thermal input states minimize
the output entropy of the one-mode quantum-limited
attenuator among all the input states with a given entropy,
i.e., for any input state p and any 0 <A <1,

S(E(p) 2 9(ag7' (S(p))) = S(E,(@)).  (15)

where @ is the thermal Gaussian state with S(®) = S(p).

Here we prove the CMOE conjecture for any phase-
covariant and -contravariant one-mode quantum Gaussian
channel. The first step is the proof for the quantum-limited
amplifier.

Theorem 2 (CMOE conjecture for the quantum-limited
amplifier).—Gaussian thermal input states minimize the
output entropy of the one-mode quantum-limited amplifier
among all the input states with a given entropy, i.e., for any
input state p and any x > 1,

S(A(P)) = g(kg™' (S(p)) +x = 1) = S(A(@)).  (16)

where @ is the thermal Gaussian state with S(®) = S(p).
Proof—Since A, is the identity channel, the claim is
trivial for « = 1. We can then assume x > 1. For S(5) =0
the claim is implied by the Gaussian minimum output
entropy conjecture [28], stating that the vacuum input state
minimizes the output entropy of any phase-covariant
quantum Gaussian channel among all the possible input
states, and, in particular, among the pure input states. We
can then assume S(p) > 0. The starting point of our proof'is
the result of Ref. [40], stating that thermal Gaussian states
saturate the p — ¢ norms of the quantum-limited amplifier.
Theorem 3 (p — g norms of the quantum-limited ampli-
fier [40]).—For any 1<p<gq and any x > 1, the p - ¢
norm of A, is saturated by a thermal Gaussian state @ (that
depends on k, p, and g), i.e., for any quantum state p,

Ac(p A(@
Il A(P)Ilq < | ( )Ilq, (17)
1Al lloll,
where
IRl = (TeR)Ye, a>1,  X>0 (18)

is the Schatten a norm [39,44].

Let p be a quantum state with 0 < S(p) < oo, and let @
be the thermal Gaussian state with S(p) = S(®).

For any a > 1, the @ Rényi entropy of a quantum state
6 is

A a A
S.(6) = In |61 (19)
-«
and satisfies [7]
Sa(6) £8(6),  1imSy(6) = S(6). (20)
From Lemma 1 of the Supplemental Material [41], for

any 1 < g < 3/2, there exists 1 < p(q) < g, such that the
p(q) = g norm of A, is saturated by &. We then have

S(A(P) 2 Sy (Ac(P))

q ) g . MA@ )
L Al =1 )
—q n || A, " 1ol
. -1
Ry
X (Sp(e) (D) = Sp(g) (@) (21)

where we have used in sequence Egs. (20), (19), and (17).
Since S(p) = S(®), we have from Eq. (20)

lim(S,(p) = §,(®)) = 0.

p—1

limS (Ac(@)) = S(A(@))-
(22)

Then, the claim Eq. (16) follows, taking the limit ¢ — 1 in
Eq. (21) and using that

~1
and 0<—L PO o

limp(q) =1 O

q—1 q—l

]

The proof of the CMOE conjecture for an arbitrary one-
mode phase-covariant quantum Gaussian channel can be
obtained by merging Theorem 1 and Theorem 2.

Theorem 4 (CMOE conjecture for phase-covariant
quantum Gaussian channels).—Gaussian thermal input
states minimize the output entropy of any one-mode phase-
covariant quantum Gaussian channel among all the input
states with a given entropy, i.e., forany 0 <1< 1,k > 1,
E > 0, and any quantum state p,

S(.6(P)) 2 g(Ag™' (S(p)) + (1= AE),  (24)
SNE() 2 9(g7'(5(p)) + E). (25)

S(Ace(P)) 2 g(kg™ (S(p)) + (k = )(E+ 1)) (26)

Proof.—We have from Eq. (11) and Theorem 2:

S(&.e(P)) = S(A¢(Ex(0)))
> g(K'g (S(€2(p))) +/ = 1).  (27)
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I is also increasing, and

increasing, too. Then,

Since ¢ 1is increasing, ¢~
St g(Kg'(S)+x —1) s
Theorem 1 implies

S(E.e(P) 2 g2 g7 (S(p)) +x' = 1), (28)

1.e., the claim.

The proofs for N and A, ; are identical. [

The proof of the CMOE conjecture for phase-
contravariant channels follows from an observation in
Ref. [33], Sec. VL.

Theorem 5 (CMOE conjecture for phase-contravariant
quantum Gaussian channels).—Gaussian thermal input
states minimize the output entropy of any one-mode phase-
contravariant quantum Gaussian channel among all the
input states with a given entropy, i.e., forany x > 1, £ > 0,
and any quantum state p:

S(Ace(p)) = g((k = 1)(g7'(S(p)) + 1) +KE).  (29)

Proof.-—(Ref. [33], Sec. VI).—The claim follows from
Theorem 4, observing that any phase-contravariant channel
can be decomposed as a phase-covariant channel followed
by the transposition, which does not change the entropy.

Conclusions.—We have proved that Gaussian thermal
input states minimize the output von Neumann entropy of
one-mode phase-covariant and -contravariant quantum
Gaussian channels among all the input states with a given
entropy. This result finally permits the extension of the
entropy power inequality to the quantum regime, and the
proof of the optimality of Gaussian encodings for both
the triple trade-off coding and broadcast communication with
the quantum-limited amplifier [35]. The future challenge
is the extension of our result to the multimode scenario. Our
proof has exploited a new technique that can be used to
determine the minimum output entropy for fixed input
entropy for any quantum channel whose p — ¢ norms
are known.
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