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We investigate the ability of a quantum measurement device to discriminate two states or, generically,
two hypotheses. In full generality, the measurement can be performed a number n of times, and arbitrary
preprocessing of the states and postprocessing of the obtained data are allowed. There is an intrinsic error
associated with the measurement device, which we aim to quantify, that limits its discrimination power. We
minimize various error probabilities (averaged or constrained) over all pairs of n-partite input states. These
probabilities, or their exponential rates of decrease in the case of large n, give measures of the
discrimination power of the device. For the asymptotic rate of the averaged error probability, we obtain
a Chernoff-type bound, dual to the standard Chernoff bound for which the state pair is fixed and the
optimization is over all measurements. The key point in the derivation is that identical copies of input states
become optimal in asymptotic settings. Optimal asymptotic rates are also obtained for constrained error
probabilities, dual to Stein’s lemma and Hoeffding’s bound. We further show that adaptive protocols where
the state preparer gets feedback from the measurer do not improve the asymptotic rates. These rates thus
quantify the ultimate discrimination power of a measurement device.
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Quantum-enabled technologies exploit the laws that
govern the microscopic world to outperform their classical
counterparts. Detectors, or measurement devices, are a key
ingredient in quantum protocols. They are the interface that
connects the microscopic world of quantum phenomena
and the world of classical, macroscopically distinct, events
that we observe. It is only through measurements that we
can access the information residing in quantum systems
and ultimately make use of any quantum advantage.
We often encounter experimental situations where meas-

urement devices (e.g., Stern-Gerlach apparatus, heterodyne
detectors, photon counters, fluorescence spectrometers) are
a given. A natural question is then to ask about the ability or
power of those devices to perform certain quantum infor-
mation-processing tasks. The informational power of a
measurement has been addressed in several ways [1], e.g.,
via the “intrinsic data” it provides [2] or the capacity of
the quantum-classical channel it defines [1,3–6], or via
some associated entropic quantities [7–10].
In this Letter we focus on what is arguably the most

fundamental primitive in quantum information processing:
state discrimination, or generically, quantum hypothesis
testing. Our aim is to explore how well a quantum
measurement device can discriminate two hypotheses.
This problem is dual to that of exploring how well two
given quantum states can be discriminated [11]. This is of
practical interest since preparing states is often easier than
tailoring optimal measurements for a given state pair.
Our main task is to discriminate two states ρ and σ using

a given measurement device. We are interested in the most

general scenario where the device can be used a number n
of times. The given measurement device is the only means
of extracting classical data from the quantum system;
however, for better performance, one is free to apply
any trace preserving quantum operation to the system prior
to measuring. Likewise, we view data processing also as
a free operation. It is then meaningful to ask what is the
minimum error probability of discrimination between ρ
and σ.
We wish to go a step further and minimize the error

probability over all state pairs. This characterizes an
intrinsic limitation on the discrimination performance of
the measurement device since, in general, a device cannot
perfectly discriminate two hypotheses, not even when they
are given by orthogonal states. This characterization is of
practical relevance since it sets the ultimate limit on the
successful identification of two arbitrary states, for instance
two critical phases of a quantum many-body system, when
one is bound to a given type of measurements apparatus.
Special attention will be paid to asymptotically large n.

We will prove that in this regime pairs of entangled states
provide no advantage over those of i.i.d. states, of the form
ρ⊗n. This is in sheer contrast with the dual problem where
the measurement is optimized for fixed i.i.d. states; there is
strong numerical evidence [12] that collective nonseparable
measurements are required to attain the corresponding
optimal exponential rate of the error probability, given
by the quantum Chernoff bound [13,14]. In the proof,
we approach state discrimination as a communication
problem and allow for adaptive protocols. In this extended
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hypothesis testing scenario, we show that adaptive proto-
cols perform better than any fixed protocol, including those
that use entangled inputs. A few examples for small n will
be briefly discussed.
Before addressing the problem in detail, it will be helpful

to recall a few definitions and results concerning hypothesis
testing. Here, the so called null, H0, and alternative, H1,
hypotheses refer respectively to two possible states, ρ, σ, of
a quantum system S. In quantum hypothesis testing, one is
confronted with the task of deciding which hypothesis
holds by performing a measurement on S. With full
generality, the measurement is defined by a two-outcome
positive operator valued measure (POVM), F ¼ fF0; F1g
(F0, F1 ≥ 0 and F0 þ F1 ¼ 1). Hypothesis H0 (H1) is
accepted if and only if F0 (F1) clicks. Two error proba-
bilities are defined: α ¼ trðF1ρÞ, false positive or type-I
error; and β ¼ trðF0σÞ, false negative or type-II error.
Generically, a decrease in a type-I error results in an
increase in a type-II error and vice versa. Depending on
the problem at hand, one may need to know, e.g., β for a
maximum allowed value of α, or one may instead be
interested in the average error probability perr ¼ ðαþ βÞ=2,
where for simplicity we assume equal priors forH0 andH1.
This second possibility is known as symmetric hypothesis
testing and leads to minimum error state discrimination
[11], where perr is minimized over all POVMs F .
When H0, H1 refer to ρ⊗n, σ⊗n, i.e., to n i.i.d. copies of

ρ, σ, the error probabilities generically fall off exponen-
tially as n increases [15]. Then, one is usually interested
in the corresponding exponential rates. For symmetric
hypothesis testing, the optimal error rate is given by the
quantum Chernoff bound [13,16]. Similarly, the exponen-
tial rate of β is given by Stein’s lemma [17,18] if an
upperbound is set on α, or by Hoeffding’s bound [19–21] if
instead a lowerbound is set on the exponential rate of α
[22]. These asymptotic bounds have found many useful
applications in quantum information theory, such as pro-
viding an alternative proof of the classical capacity of a
quantum channel [23,24], giving operational meaning to
abstract quantities [25], quantum reading [26], or in
quantum illumination [27,28].
Coming back to our original problem, we wish to assess

the discrimination power of a device given by a specific
POVM, E ¼ fEkgmk¼1. Let us assume that the positive
operators Ek (generically nonorthogonal) act on a finite
d-dimensionalHilbert space,Hd [29], of thequantumsystem
S. First, using free operations, we need to produce a valid
POVM,F ¼ fF0; F1g, out of E, to discriminate two states ρ
and σ. This can be achieved [1] by grouping (postprocessing)
the measurement outcomes, f1; 2;…; mg, in two disjoint
sets a, ā, and defining Ea ≔

P
k∈aEk, Eā ≔

P
k∈āEk ¼

1 − Ea. Then, F ¼ fEa
M; Eā

Mg, where Ea
M ¼ M†ðEaÞ

(likewise for Eā
M), for a suitable trace preserving quantum

operation M (preprocessing). The error probabilities thus
read α ¼ trðEā

MρÞ and β ¼ trðEa
MσÞ.

In this single-shot scenario, we can now quantify the
discrimination power of E by the minimum average error
probability. It can be written as

p�
err ¼ min

a
min
ðρ;σÞ

1

2
f1þ tr½Eaðσ − ρÞ�g; ð1Þ

where the minimization is over all partitions fa; āg of the
outcome set (over all postprocessing operations) and
over all state pairs ðρ; σÞ, so M can be dropped in the
minimization. One can readily check [1] that the minimum
single-shot error probability is given by the spread of Ea:
p�
err ¼ 1=2 −minaðλamax − λaminÞ=2. This value is attained

when ρ (σ) is the eigenstate of Ea corresponding to its
maximum (minimum) eigenvalue.
The single-shot scenario above is too restrictive since

one can easily envision discrimination settings where the
measurement E is performed a number n of times. In the
most general setting, a system consisting of n copies of S
is prepared (by, say, Alice) in one of the states of the pair
(ρn, σn), corresponding respectively to hypotheses H0

and H1. Here, ρn, σn ∈ SðH⊗n
d Þ, where SðHÞ stands for

the set of density matrices on a Hilbert space H, can be
fully general, not just of the form ρ⊗n, σ⊗n. The measurer’s
(say, Bob’s) goal is to tell which hypothesis is true by
performing n measurements, all of them given by the
POVM E. Free operations include again preprocessing of
(ρn, σn) and postprocessing of the classical data gathered
after each measurement. As in Eq. (1), when minimizing
over state pairs, it is enough to choose the discriminating
POVM as F ¼ fEa; Eā ¼ 1 − Eag, where Ea has now the
form

Ea ¼
X

kn∈a
Ekn ≔

X

kn∈a
⊗
n

i¼1
Eki : ð2Þ

Here kr ≔ fk1; k2;…; krg denotes a sequence of outcomes
of length r (k0 ≔ ∅), so kn is obtained after completing all
measurements. The two disjoint sets a and ā now contain
all the sequences assigned to the hypotheses H0 and H1,
respectively. Type-I and type-II error probabilities are
αn ¼ trðEāρnÞ and βn ¼ trðEaσnÞ, and the error probability
for symmetric hypothesis testing can be written as perr ¼
minaðαn þ βnÞ=2 [30].
It is not hard to see that the errors fall off exponentially

with n [15,31]. It is then natural to quantify the discrimi-
nation power of E by the optimal asymptotic exponential
rate of perr, defined as

ζCB ¼ − lim
n→∞

min
ðρn;σnÞ

1

n
logperr: ð3Þ

Although perr can still be written as the spread of the
optimal grouping, the number of groupings grows super-
exponentially with n. Moreover, very little is known about
the spectrum of operator sums such as those in Eq. (2)
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and their eigenvectors (i.e., ρn and σn). A few examples that
show the difficulties of dealing with finite n are given
below. We will thus evaluate Eq. (3) following an alter-
native route, encapsulated in the following theorem, which
is our main result.
Theorem 1: The optimal exponential rate defined in

Eq. (3) is given by the classical Chernoff bound (CB) [22]:

ζCB ¼ −min
ðρ;σÞ

min
0≤s≤1

ϕðsjP∥P̄Þ; ð4Þ

where Pk ¼ trðEkρÞ and P̄k ¼ trðEkσÞ are the outcome
probability distributions of (a single use of) the POVM E,
and ϕðsjP∥P̄Þ ≔ log

P
kP

s
kP̄k

1−s. This rate can be attained
using i.i.d. states, ρ⊗n and σ⊗n.
The main ingredient of the proof of Theorem 1 is to show

that our problem is a particular case of classical channel
discrimination. We will then use Ref. [32] to complete
the proof.
To this end, let us momentarily broaden the scope of our

original problem. First, we view hypothesis testing as a
communication protocol where Alice (the state preparer)
sends one of two possible messages, H0, H1, to Bob (the
measurer) using suitable states in SðH⊗n

d Þ. Bob is allowed to
perform n measurements with his detector to identify with
minimum error which of themessages Alice sent. Second, in
this communication context it is natural to allow classical
feedback from Bob to Alice after each measurement. This
enables an adaptive protocol (see Fig. 1) inwhichAlice sends
one state at a time to Bob’s detector and waits for him to
provide feedback on the obtained outcome. Alice uses this
information to prepare the succeeding state in a way that
minimizes the identification error. Such protocols arewidely
used in quantum information theory [33–37], particularly in
quantum channel discrimination [35,38,39]. It follows from
the structure of Ekn in Eq. (2), that
Lemma 1: for any ρn ∈ SðH⊗n

d Þ (analogously for σn)
there is an adaptive protocol that gives the same outcome
probability distribution.
Adaptive protocols are thus more general than those in

which ρn is entangled, so the optimal protocol can be
chosen to be adaptive with no loss of generality.
To prove Lemma 2, we define ρ0∅ ≔ tr½n�n1ðρnÞ, where we

denote by ½n�ns the set f1; 2;…; s − 1; sþ 1;…; ng,

s ¼ 1; 2;…; n. Then, ρn and ρ0∅ give the same probability
distribution to the outcomes of Bob’s first measurement:
Pðk1jρnÞ ≔ tr½ðEk1 ⊗ 1Þρn� ¼ trðEk1ρ

0∅Þ. With Bob’s feed-
back (the value of k1), Alice can next prepare the second
(unnormalized) state as ρ0k1 ≔ tr½n�n2½ðEk1 ⊗ 1Þρn�. So, ρn
and ρ0k1 give the same outcome probabilities up to Bob’s
second measurements: Pðk2jρnÞ ≔ tr½ðEk2 ⊗ 1Þρn� ¼
trðEk2ρ

0
k1
Þ. Note that the probabilities of previous outcomes

are implicit in the normalization of ρ0k1 . We readily see that
if Alice’s preparation at an arbitrary step s is

ρ0ks−1 ≔ tr½n�ns½ðEks−1 ⊗ 1Þρn�; ð5Þ

where we used the convention Ek0 ¼ E∅ ≔ 1, then
PðksjρnÞ ¼ trðEksρ

0
ks−1Þ, s ¼ 1; 2;…; n (obviously, the

analogous relation holds for σn, σ0ks−1). This completes
the proof of the lemma.
Next, to prove Theorem 1, we show that the adaptive

communication protocols introduced above can be cast as
discrimination of two classical channels. To this end,
we choose the classical (continuous) input alphabet as
X ¼ SðHdÞ × SðHdÞ, where each letter x ¼ ðρ; σÞ ∈ X is
a classical description of the pair of states. The output
alphabet Y is naturally given by the outcome labels of our
fixed measurement (i.e., the POVM E): Y ¼ f1; 2;…; mg.
We can then associate the null [alternate] hypothesis H0

[H1] with the classical channelWxðkÞ ≔ trðEkρÞ [W̄xðkÞ ≔
trðEkσÞ], where x ∈ X and k ∈ Y. These channels repro-
duce the same conditional probabilities, Pk and P̄k, that
arise in our original problem. Hence the (single-shot)
optimal state discrimination is formally equivalent to the
optimal channel discrimination obtained by minimizing
over the inputs x ∈ X .
This analogy holds also for our general, multiple-shot

problem. The adaptive protocol defined by the states
ρ0ks−1 ; σ0ks−1 ∈ SðHdÞ, s ¼ 1; 2;…; n, translates into an
adaptive channel discrimination strategy with n uses of
either W or W̄, where at each step s we feed the channel
with an input letter xks−1 ∈ X, conditional on the previous
outcomes ks−1 ¼ fk1; k2;…; ks−1g, ki ∈ Y.
We can now invoke the main result in Ref. [32]. It states

that for the problem of classical channel discrimination no
adaptive strategy can outperform the best nonadaptive or
fix strategy. More precisely, it states that the optimal error
rate can be attained by the simple sequence where all the
letters are equal, x1 ¼ x2 ¼ � � � ¼ xn. We hence conclude
that the optimal error rates for our original problem can be
achieved by i.i.d. state pairs, ðρ⊗n; σ⊗nÞ. This holds for the
Chernoff bound, Hoeffding’s bound, and for Stein’s lemma
[see Eq. (6) below].
Computing the exponent rate in Eq. (3) is now identical

to computing the analogous rate for the classical hypoth-
esis testing problem of discriminating between the prob-
ability distribution Pk ¼ trðEkρÞ and P̄k ¼ trðEkσÞ after n

FIG. 1. Adaptive protocol. At each step (left to right), Alice
sends to Bob (solid arrows) the state in Eq. (5), which she has
prepared using Bob’s feedback (dashed arrows).
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samplings, which is given by the classical Chernoff bound
(CB) [22]. This completes the proof of Theorem 1.
A simple, very explicit, alternative proof of this theorem

for two-dimensional two-element POVMs can also be
found in Ref. [40]. Also in Ref. [40], the reader will find
upper- and lowerbounds to ζCB (and to ζSL and ζHB, defined
below) that hold under mixing of POVMs.
It is plausible that Eq. (4) is minimized by an orthogonal

pair, as such pairs arguably give rise to the most distinguish-
ableP and P̄ distributions. This would entail a simplification
in the evaluation of ζCB. We have so far failed to prove the
optimality of orthogonal pairs in full generality, though it is
supported by extensive numerical analysis and it holds for the
examples in the next paragraph [41].
To illustrate our results, in Ref. [40] we compute the

discrimination power of the qubit covariant POVM,
E ¼ f1þ n · σgn∈S2 , where σ is the vector of Pauli matrices
and S2 is the unit 2-sphere. The result is ζCB ¼ − logðπ=4Þ
which can be compared to ζCB ¼ −ð1=2Þ logð1 − r2Þ,
corresponding to a noisy Stern-Gerlach apparatus of purity
r. We see that E has the same discrimination power that a
Stern-Gerlach apparatus with purity r ≈ 0.62.
So far, special emphasis has been placed on the asymp-

totics of the problem at hand. It is illustrative to examine
with a few examples the difficulties arising for finite n,
where some of the asymptotic results do not hold. Let us
focus on two-element POVMs, E ¼ fE1; E2 ¼ 1 − E1g. In
this case, E1 and E2 commute and can be diagonalized
simultaneously. In the multiple-shot scenario, the group-
ings fEa; Eāg will also be diagonal in the very same local
basis that diagonalizes E1 and E2 and thus each state of the
optimal pair, (ρn, σn), in necessarily a product state of
elements of that basis. In this case, however, one can show
that i.i.d. states are not necessarily optimal. In Ref. [40] we
give a concrete example for n ¼ 3 where the optimal states
are ρ3 ¼ j001ih001j and σ3 ¼ j110ih110j, rather than
j000ih000j and j111ih111j. Furthermore, we also show
that there exists an adaptive protocol with yet a smaller
error rate, thus outperforming the optimal nonadaptive
protocol for n ¼ 3.
Though in this Letter we have focused on the problem

dual to symmetric hypothesis testing, which led us to Eq. (4),
the very same arguments concerning the optimality of i.i.d.
state pairs apply to the dual Stein’s lemma and Hoeffding’s
bound, whose asymptotic rates are defined as ζSL=HB ¼
−limn→∞ minðρn;σnÞð1=nÞ log βn, where the minimization is
subject to αn ≤ ϵ and αn ≤ e−nr, respectively. It follows from
our analysis that they can be computed simply as

ζSL ¼ max
ðρ;σÞ

DðP∥P̄Þ;

ζHB ¼ max
ðρ;σÞ

sup
0≤s≤1

−sr − ϕðsjP∥P̄Þ
1 − s

; ð6Þ

whereDðP∥P̄Þ ¼ P
kPk logðPk=P̄kÞ is the relative entropy.

In summary, we have introduced a class of problems dual
to quantum hypothesis testing where the measurement
device is a given. We have derived simple expressions
for the asymptotic (exponential) error rates, which quantify
the discrimination power of the measurement device when
it can be used multiple times. We have briefly discussed
two paradigmatic examples for qubits, covariant POVMs,
and noisy Stern-Gerlach apparatus, and addressed the
nonasymptotic regime with some examples. As final
remarks, we point out that these dual problems complement
our understanding of quantum hypothesis testing and state
discrimination and we believe they will find many appli-
cations in quantum information theory. Open problems
include a deeper understanding of the structure of the
optimal pairs and extending the analysis to infinite dimen-
sional systems such as light fields, where constraints on the
mean energy are necessary.
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