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Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar
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Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that
change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis
based on numerical and physical prototypes shows that these shape changes add sensory information
(mutual information between distant shape conformations <20%), increase the number of resolvable
directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate
that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.
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Like many hearing systems in biology, bat biosonar [1]
encodes information about the presence [2], location [3],
and characteristics of sound sources [4,5] in the environ-
ment. However, unlike many of its peers, bat biosonar by
itself has the proven capability of encoding sensory
information sufficient for rapid navigation in three dimen-
sions, often in highly complicated environments [6]. The
sites of ultrasound emission and reception are critical stages
for the encoding of this information, because they are the
only places where direction-dependent acoustic diffraction
can occur [7]. Hence, structures positioned at these sites
provide the sole physical substrate for the encoding of
sensory information related to target direction. Probably
because of this pivotal functional position, many bat
species have evolved elaborate baffle shapes that diffract
their ultrasonic pulses upon emission (noseleaves, in
species with nasal emission) as well as during reception
(pinnae). In horseshoe bats (family Rhinolophidae, [8]), for
instance, shape features of the noseleaves [9] and the
pinnae [10] have been linked to the distribution of the
emitted energy and the receiver sensitivity as a function of
direction (beam patterns). In recent years, a growing body
of evidence has accumulated to suggest that, beyond their
static geometric complexity, the noseleaves and pinnae of
horseshoe bats have a prominent dynamic dimension [11].
Fast dynamic shape changes that go beyond rotations of
static shapes [12,13] have been demonstrated to occur in
both interface structures, noseleaves [14,15] and pinnae
[16,17]. Along with the dynamic changes to the interface
shapes, changes to the emission beam patterns during
natural biosonar behaviors have been reported, but the
underlying acoustic mechanisms remain unclear [18].
Evidence from several sources supports the hypothesis
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that the shape changes in the biosonar interfaces play a
functional role: (i) the shape changes are effected by
elaborate muscular actuation mechanisms [16,19], (ii) bats
control the dynamic shape configuration sequences based
on behavioral context [14,16], (iii) shape deformations
coincide with ultrasonic diffraction in time [14,15], (iv) the
magnitudes of the shape changes are significant compared
to the transmitted wavelength [14,15,17]. In accordance
with (iv), noseleaf and pinna deformations in horseshoe
bats have been predicted to produce qualitative beam
pattern changes [15,17,20]. Similar changes have been
demonstrated experimentally with biomimetic reproduc-
tions of noseleaves [21] and pinnae [10,22]. In these
experiments, the shape deformations resulted in time-
variant device characteristics [21,23]. In the frequency
domain, the beam patterns typically alternated between a
concentration of sensitivity in a single main lobe and
scattering among local maxima (side lobes) [10,17].

Investigating the impact of these dynamic effects on the
encoding capacity for sensory information requires four-
dimensional characterizations, i.e., emission amplitude or
sensitivity gain measured over time, two direction angles,
and frequency. Data of sufficient quantity and quality for
such characterizations are very difficult to obtain from live
bats. Therefore, the present work has been based on two
types of data sets: numerical estimates derived from
detailed digital models of the natural geometries of the
noseleaves and pinnae [17,22] and measurements taken
from biomimetic physical prototypes (either with full
details or simplified) [10,21,24]. In total, four different
data sets (Fig. 1) were used as a basis for an information-
theoretic analysis of the dynamics in the horseshoe bat
biosonar system [25].
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FIG. 1. Different sample types used to obtain acoustic far-field
(beam pattern) data on the emitter and receiver dynamics of
greater horseshoe bat biosonar. (a) (NN) Digital noseleaf model
used for computer animation of in vivo dynamics followed by
numerical analysis. (b) (PN) Detailed physical replica of the
noseleaf created through additive manufacturing (scaled 2x).
(c) (BP) Portrait of a greater horseshoe bat. (d) (NP) Digital pinna
model used to recreate dynamic behavior of 3D landmarks
(shown as small spheres) obtained from stereo high-speed
recordings. (e) (PP) Simplified deformable physical prototype
modeled after the horseshoe bat pinna (scaled 2.5x).

To test whether the dynamic shape changes could be
functionally relevant, the sensory encoding performance
of dynamic shape conformation sequences was compared
to a static reference. Since each continuous dynamic shape
progression was represented by a discretized sequence
of five shape conformations, the static reference used an
equal number of identical static conformations. This was
done since averaging over multiple measurements (one for
each conformation) with independent noise realizations
improves the signal-to-noise ratio (SNR) and hence bene-
fits the sensory encoding performance for static and
dynamic conformation. To provide a specific functional
advantage, the dynamics must encode additional sensory
information with performance benefits that go beyond this
generic SNR improvement associated with averaging over
repeated measurements.

To test for the encoding of additional sensory informa-
tion, estimates of normalized mutual information [26-29]
were used to quantify the dependence between beam
patterns associated with different noseleaf and pinna
conformations. Mutual information between beam patterns
was estimated based on beam pattern gain values that were
mapped into a discrete alphabet using spectral clustering
[30]. A mutual information of zero means that the two
respective beam patterns offer entirely independent views
of the environment and a value of 100% signifies complete
dependence; i.e., the sensory information obtained with one
beam pattern can be predicted completely from the infor-
mation obtained with the other. The normalized mutual
information estimates behaved similarly across all studied
data sets: mutual information always decreased with
increasing distance between the respective conformation
stages (Fig. 2). For the beam patterns of neighboring
conformation stages, it did not exceed 45% (maximum
seen in sample NN, averaged over all combinations of
neighboring conformations). With increasing distance
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FIG. 2. Dynamic changes in noseleaf and pinna shapes result
in a sequence of device characteristics (beam patterns) with low
dependence as measured by mutual information. Bar height
indicates normalized mutual information (in %) as a function
of distance between the respective shape conformations (aver-
aged over all conformation pairs with the respective separation
value). Error bars indicate the maximum and minimum values
for mutual information found across all pairs of conformation
stages with the same distance. Distance is measured on an ordinal
scale within a sample of representative conformations across
the structures’ deformation cycle. NN, PN, NP, PP refer to the
samples shown in Fig. 1.

between conformation stages, it decreased to values below
20% for the most distant stages. These values indicate a
weak dependence between the beam patterns produced by
different conformation stages and demonstrate that inte-
grating sensory inputs across different stages encodes new,
independent sensory information about the animal’s acous-
tic environment.

To assess whether the additional information encoded by
virtue of the sensor dynamics has a measurable impact on
biosonar performance, an upper bound on resolving differ-
ent directions of sound incidence was computed. The
bound is based on the concept of Gaussian channel capacity
[31] and gives the maximum number of directions that can
be resolved without error over the entire direction domain.
The number of resolvable directions is a global measure of
resolution; since the method does not provide a distribution
for the resolved directions, it is possible that the resolution
would be much higher than average in some regions and
lower in others. The bound was computed for a set of lower
signal-to-noise ratios (SNR <20 dB). As expected, the
maximum number of resolvable directions increased with
the SNR for all shape types (NN, PN, NP, PP) and
conformation stages (Fig. 3). Use of repeated measure-
ments with the same device conformation stage and
independent noise resulted in a resolution increase that
is predicted by the SNR improvement (~7 dB) achieved by
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FIG. 3. Combining stages of a dynamic sensor increases the
directional resolution in the presence of noise. Directional
resolution is quantified by an upper bound on the number of
resolvable directions that is a function of signal-to-noise ratio
(additive white Gaussian noise [31]). The upper bound is
expressed either directly as the maximum number of resolvable
directions (right-hand axis) or as a directional resolution (in
bits, i.e., log, of the maximum number of resolvable directions,
left-hand axis). Black: individual sensor conformation stages;
dark gray: effect of averaging signals from an identical sensor
conformation stage five times; light gray: effect of combining five
different sensor conformation stages. NN, PN, NP, PP refer to the
samples as shown in Fig. 1.

averaging five samples with independent noise. In contrast,
combining sensory information across different conforma-
tion stages yielded resolution improvements that were
substantially higher than the effects of averaging over
repeated measurements from the same device conforma-
tion. As the SNR increased, the gap between the resolutions
provided by averaging and those achieved by integration
across different conformation stages widened. At an SNR
of 6 dB, for example, a single measurement with an
individual device conformation yielded a resolution of
3.7 bits (i.e., ~13 different directions) on average. Five
measurements from identical conformations improved the
upper resolution bound to 7.5 bits (i.e., ~181 resolvable
directions). Combining measurements across five different
conformations added another 3.5 bits of resolution and
brought the total number of resolvable directions up to
~1867. This effect was even stronger at a higher SNR of
12 dB where using different conformations improved the
resolution bound by 9.5 bits over repeated measurements
with identical configurations, which corresponds to
increasing the upper bound on the number of resolvable
directions from 3100 to 2.2 x 10°.

As a complementary evaluation of how the increased
sensory encoding capacity added by the shape dynamics
can impact sensory estimation performance, the local
accuracy of direction finding was measured by the

Cramér-Rao lower bound (CLRB, [32,33]) at a higher
SNR (i.e., 40 dB, Fig. 4). The CRLB provides a lower
bound on the estimation error of an unbiased estimator for
target direction. As a local measure, it gives a spatially
resolved characterization of system performance. For each
direction in space, an error ellipse can be computed which
encloses the set of direction within which a certain
percentage of the estimates will fall. As was the case for
global bound on direction resolution described above, the
CRLB performance bound was substantially improved by
combining information collected across different confor-
mation stages. In all studied data sets, the maximum value
for the lower bound on the standard deviation of the
estimate, i.e., the length of the major axis of the error
ellipse, was reduced by between 21% (sample NN) and
38% (sample NP) on average when different conformations
instead of a single repeated conformation were used
(Fig. 4). In two of the four studied samples (PN and
NP), use of the dynamic conformation sequence substan-
tially reduced the right-hand (i.e., large-error) tail of the
error distribution (Fig. 4). Hence, the sensor dynamics
resulted in a substantial improvement of direction-finding
accuracy, especially in regions where large uncertainties
remained with the static configurations of the shapes.

The results of the present study demonstrate that
dynamic conformation changes of the noseleaves and
pinnae as seen in horseshoe bats increase the coding
capacity for sensory information substantially. Since this
result is based on a discretized version of the continuous
shape conformation sequence seen in Nature, it is likely an
underestimate of the true dynamic enhancement of the
sensory encoding capacity.
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FIG. 4. Combining dynamic sensor conformations increases
directional accuracy. Estimation accuracy quantified by Cramér-
Rao lower bound (CRLB). Top row: map of error ellipses
(90% confidence intervals) for repeated individual sensor con-
formation stage (left-hand side) and combination of five different
sensor conformation stages (right-hand side). Error ellipses are
drawn on top of the averages over all beampatterns gains used in
the respective scenario. Bottom row: distribution of accuracy
(major axis of the error ellipses for the 90% confidence interval).
Blue: individual sensor conformation stages, green: effect of
averaging the same stage five times, red: effect of using five
different sensor conformation stages. NN, PN, NP, PP refer to the
samples as shown in Fig. 1.
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It is noteworthy that the observed effects on the sensory
encoding capacity and estimation performance were quali-
tatively and quantitatively similar across all four data sets—
despite their very different nature (i.e., physical versus
numerical, detailed versus simplified). The presence of the
coding-capacity effects in data obtained from numerical
predictions as well as from physical measurements renders
it unlikely that these results were due to methodological
artifacts, since the two methods used have little in common
and should hence not be subject to the same artifacts. The
presence of the effects in detailed reproductions of bio-
logical shape geometries as well as in highly simplified
biomimetic models suggests that the results reflect robust
fundamental properties of the sensor dynamics that are not
overly sensitive to the fine-scale details of the noseleaf or
pinnae. This robustness of the effects will be important for
potential engineering applications, because it suggests that
the fundamental dynamic encoding phenomena could be
exploited in manmade sensing systems even if these
differed substantially from the specific biological confor-
mations that inspired them. Nevertheless, a detailed analy-
sis of the dynamic shape features seen in horseshoe bats
could result in further improvements of the sensory-coding
capacity.

Here, the utility of the dynamic effects has been
demonstrated in the context of traditional sonar sensing
tasks (direction resolution and direction-finding accuracy).
While these tasks can be expected to be of pivotal
importance to any (bio)sonar system, they are almost
certainly insufficient to explain how biosonar meets the
bats’ sensory information needs in complicated natural
environments. As of now, it remains unknown how bio-
sonar supports the navigation of horseshoe bats in their
natural environments. This leaves the intriguing possibility
that the dynamics of horseshoe bat biosonar is a key factor
behind some of the animals’ most astounding sensory
capabilities that have yet to be understood and reproduced
by engineered systems. Examples of the latter are the
abilities of bats to navigate in dense natural vegetation
[34,35] or to fly and hunt in dense swarms. Since the
dynamic effects analyzed here add an additional temporal
dimension to the sensors, they could provide novel ways
to address the challenges associated with these and other
sensing tasks. If this is the case, bioinspired dynamic
principles could allow manmade sensor technology to
master the same challenges and hence close the remaining
performance gap between active sensing in biology and in
engineering.

This work was supported by National Aeronautics
and Space Administration (Grant No. NNX09AU54G),
U.S. Army Research Office (Grant No. 451069), National
Science Foundation (Grants No. 1053130 and
No. 1362886), Naval Engineering Education Center,
National Natural Science Foundation of China (Grants
No. 11374192, No. 11074149, and No. 11574183), and

Fundamental Research Fund of Shandong University
(Grant No. 2014QY008).

L. G. shared numerical beam pattern data, N. R. advised
on clustering methods, and D.W. helped with digital
animation. R.M. and A.K.G. contributed equally to
this work.

“Also at Shandong University— Virginia Tech International
Laboratory, Shandong University, Jinan, China.

[11 G. Neuweiler and E. Covey, Biology of Bats (Oxford
University Press, Oxford, 2000).

[2] B. Mghl, in Animal Sonar, edited by P. Nachtigall and P.
Moore, NATO ASI Science Vol. 156 (Springer, New York,
1988), pp. 435-450.

[3] J. Simmons, J. Acoust. Soc. Am. 54, 157 (1973).

[4] J.A. Simmons, W.A. Lavender, B. A. Lavender, C.A.
Doroshow, S. W. Kiefer, R. Livingston, and A.C. Scallet,
Science 186, 1130 (1974).

[5] J. Ostwald, H.-U. Schnitzler, and G. Schuller, in Animal
Sonar, edited by P. Nachtigall and P. Moore, NATO ASI
Science Vol. 156 (Springer, New York, 1988), pp. 413-434.

[6] M. Bates, J. Simmons, and T. Zorikov, Science 333, 627
(2011).

[7] R. Miiller, J. Acoust. Soc. Am. 128, 1414 (2010).

[8] C. Csorba, P. Ujhelyi, and N. Thomas, Horseshoe Bats of
the World (Alana Books, Bishop’s Castle, Shropshire,
England, 2003).

[9] S. Pedersen and R. Miiller, Bat Evolution, Ecology,
and Conservation (Springer Science+Business Media,
New York, 2013), pp. 71-92.

[10] M. Pannala, S. Meymand, and R. Miiller, Bioinspir. Biomim.
8, 026008 (2013).

[11] R. Miiller, Eur. Phys. J. Spec. Top. 224, 3393 (2015).

[12] J. Mogdans, J. Ostwald, and H.-U. Schnitzler, J. Acoust.
Soc. Am. 84, 1676 (1988).

[13] P. Jen, Frontiers of biology 5, 128 (2010).

[14] L. Feng, L. Gao, H. Lu, and R. Miiller, PLoS One 7, e34685
(2012).

[15] W. He, S. Pedersen, A. Gupta, J. Simmons, and R. Miiller,
PLoS One 10, 0121700 (2015).

[16] H. Schneider and F. P. Mchres, J. Comp. Physiol. A 44, 1
(1960).

[17] L. Gao, S. Balakrishnan, W. He, Z. Yan, and R. Miiller,
Phys. Rev. Lett. 107, 214301 (2011).

[18] N.Matsuta, S. Hiryu, E. Fujioka, Y. Yamada, H. Riquimaroux,
and Y. Watanabe, J. Exp. Biol. 216, 1210 (2013).

[19] L. Gobbel, Cells Tissues Organs 170, 39 (2002).

[20] A. Gupta, D. Webster, and R. Miiller, J. Acoust. Soc. Am.
138, 3188 (2015).

[21] Y. Fu, P. Caspers, and R. Miiller, Bioinsp. Biomim. 11,
036007 (2016).

[22] A.K. Gupta, Y. Fu, and R. Miiller, in ASME Conference on
Smart Materials, Adaptive Structures & Intelligent Systems
(SMASIS 2013) (ASME, New York, 2013).

[23] S.Z. Meymand, M. Pannala, and R. Miiller, J. Acoust. Soc.
Am. 133, 1141 (2013).

[24] R. Miiller, M. Pannala, O. P. K. Reddy, and S. Z. Meymand,
Smart Mater. Struct. 21, 094025 (2012).

158102-4


https://doi.org/10.1121/1.1913559
https://doi.org/10.1126/science.186.4169.1130
https://doi.org/10.1126/science.1202065
https://doi.org/10.1126/science.1202065
https://doi.org/10.1121/1.3365246
https://doi.org/10.1088/1748-3182/8/2/026008
https://doi.org/10.1088/1748-3182/8/2/026008
https://doi.org/10.1140/epjst/e2015-50089-7
https://doi.org/10.1121/1.397183
https://doi.org/10.1121/1.397183
https://doi.org/10.1007/s11515-010-0020-y
https://doi.org/10.1371/journal.pone.0034685
https://doi.org/10.1371/journal.pone.0034685
https://doi.org/10.1371/journal.pone.0121700
https://doi.org/10.1103/PhysRevLett.107.214301
https://doi.org/10.1242/jeb.081398
https://doi.org/10.1159/000047920
https://doi.org/10.1121/1.4935387
https://doi.org/10.1121/1.4935387
https://doi.org/10.1088/1748-3190/11/3/036007
https://doi.org/10.1088/1748-3190/11/3/036007
https://doi.org/10.1121/1.4773272
https://doi.org/10.1121/1.4773272
https://doi.org/10.1088/0964-1726/21/9/094025

PRL 118, 158102 (2017)

PHYSICAL REVIEW LETTERS

week ending
14 APRIL 2017

[25] SeeSupplemental Material athttp://link.aps.org/supplemental/
10.1103/PhysRevLett.118.158102 for description of methods
and example videos of biological and biomimetic pinna and
noseleaf motions.

[26] T. Cover and J. Thomas, Elements of Information Theory
(Wiley Series in Telecommunications, Wiley, New York,
1991).

[27] C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).

[28] G. Basharin, Theory Probab. Appl. 4, 333 (1959).

[29] R. Suzuki, J. Buck, and P. Tyack, J. Acoust. Soc. Am. 119,
1849 (2006).

[30] U. V. Luxburg, Stat. Comput. 17, 395 (2007).

[31] J. Buck, Proceedings of the IEEE SAM Workshop (IEEE,
New York, 2002), p. 184.

[32] S.M. Kay, Estimation Theory, Fundamentals of Statistical
Signal Processing Vol. I (Prentice Hall PTR, New Jersey,
1993).

[33] R. Miiller, H. Lu, and J.R. Buck, Phys. Rev. Lett. 100,
108701 (2008).

[34] G. Neuweiler, W. Metzner, U. Heilmann, R. Riibsamen, M.
Eckrich, and H. Costa, Behav. Ecol. Sociobiol. 20, 53 (1987).

[35] R. Miiller and R. Kuc, J. Acoust. Soc. Am. 108, 836 (2000).

158102-5


http://link.aps.org/supplemental/10.1103/PhysRevLett.118.158102
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.158102
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.158102
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.158102
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.158102
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.158102
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.158102
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1137/1104033
https://doi.org/10.1121/1.2161827
https://doi.org/10.1121/1.2161827
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1103/PhysRevLett.100.108701
https://doi.org/10.1103/PhysRevLett.100.108701
https://doi.org/10.1007/BF00292166
https://doi.org/10.1121/1.429617

