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We study the melting of quasi-two-dimensional colloidal hard spheres by considering a tilted monolayer
of particles in sedimentation-diffusion equilibrium. In particular, we measure the equation of state from the
density profiles and use time-dependent and height-resolved correlation functions to identify the liquid,
hexatic, and crystal phases. We find that the liquid-hexatic transition is first order and that the hexatic-
crystal transition is continuous. Furthermore, we directly measure the width of the liquid-hexatic
coexistence gap from the fluctuations of the corresponding interface, and thereby experimentally establish
the full phase behavior of hard disks.
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Thermal hard spheres are the fruit flies of statistical
mechanics as they embody the simplest interacting many-
body system. In the 1950s, signs of a purely entropic first-
order freezing transition in three-dimensional (3D) hard
spheres were observed in simulations [1,2], but led to much
controversy [3], only resolved 30 years later when the
numerical predictions were tested and confirmed by experi-
ments using colloidal model hard spheres [4]. Surprisingly,
it has taken much longer for simulations to converge on
a prediction for the nature of the freezing transition of
spherical particles in a two-dimensional (2D) geometry,
making the phase behavior of the 2D analogue, hard disks,
the subject of substantial debate [5–14]. Recent simulations
have suggested, however, that hard disks undergo a first-
order transition from the isotropic liquid to the so-called
hexatic phase, and a continuous transition from the hexatic
phase to the crystalline phase [11,12].
For 2D systems, in general, melting via the hexatic

phase is rationalized by the celebrated Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) scenario [15–18], intro-
duced in the 1970s. This relates the increasing disorder
upon melting of 2D crystals to the unbinding of topological
defects. More specifically, the unbinding of dislocation
pairs into free dislocations first transforms the 2D crystal,
characterized by long-ranged bond-orientational and quasi-
long-ranged translational order, into the hexatic phase.
Importantly, while the free dislocations destroy the trans-
lational order in the hexatic phase, the bond-orientational
order is retained. The hexatic phase subsequently becomes
a liquid by the unbinding of dislocations into isolated
disclinations, resulting in the liquid exhibiting both short-
ranged bond-orientational and translational order.
Many aspects of KTHNY theory have been observed in

experiments on 2D systems of superparamagnetic colloids
interacting via a soft potential [19–23]. However, results
from simulations suggest that the nature of 2Dmelting may,
in fact, be sensitively affected by the pair potential [14,24],

particle shape [25], out-of plane fluctuations [13], pinned
particles [26,27], or vacancies [28], with alternative melting
scenarios seen experimentally in different colloidal systems
[29–32]. Nevertheless, for the simplest possible interacting
system in two dimensions, hard disks, the nature of the
melting transition is yet to be confirmed experimentally—
more than half a century after the first simulations of
hard-disk freezing were published—despite receiving an
enormous amount of attention [5–14].
Here, we use a tilted monolayer of colloidal hard spheres

in sedimentation-diffusion equilibrium to experimentally
establish the full phase behavior of hard disks. Our quasi-
2D colloidal system has previously been shown to be an
excellent model for hard disks [33,34]. It is prepared by
allowing 2.79 μm diameter melamine formalydehyde
spheres in a water-ethanol mixture to sediment, to form
a monolayer at the base of a glass sample cell (see
Supplemental Material [35]). The samples are placed on
a bright-field video microscope, which is tilted by a small
and variable angle, α. This leads to a further sedimentation
of the particles parallel to the base of the cell, which
after equilibration for many weeks establishes an in-
plane sedimentation-diffusion equilibrium [see Fig. 1(a)].
Importantly, the values of α are carefully chosen such that
the gravitational height parallel (hg∥) to the base of the cell
is large, resulting in an area fraction gradient as a function
of the height z, ϕðzÞ. At the same time, the gravitational
height perpendicular (hg⊥) to the base of the cell is less
than 3% of the particle diameter at all tilt angles, ensuring
the 2D nature of our system at all area fractions (see
Supplemental Material [35]). Following equilibration, the
system is imaged at a rate of one frame per sec for 2 h,
and standard particle tracking procedures [40] are used to
obtain particle coordinates and tracks. Note that in the
following discussion, the coordinate axes are defined such
that the z axis runs parallel to the ϕðzÞ gradient and the x
axis perpendicular to it.
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Figure 1(a) shows a typical experimental image of the
colloidal monolayer in sedimentation-diffusion equilibrium
at a tilt angle α ¼ 0.56°. Here, the structure is seen to vary
from that of a dilute liquid at large z to a dense ordered
phase at small z. Crucially, the width of the region over
which this transition occurs increases with decreasing tilt
angle, allowing for a detailed investigation of the full phase
behavior of the system (see Supplemental Material [35] for
experimental images of the monolayer at all tilt angles).
From the tracked particle positions, we determine the
density profiles, ϕðzÞ, which are linked to the equation
of state as

Π
ρkBT

¼ 1

hg∥

1

ϕðzÞ
Z

∞

z
ϕðz0Þdz0; ð1Þ

where Π is the osmotic pressure, ρ the number density,
kB the Boltzmann constant, and T the temperature.
As the experimental equation of state in the liquid phase
is known to be accurately described by scaled particle
theory (SPT) [33,41], we obtain values of hg∥ by calculat-
ing the ϕðzÞ dependent part of Eq. (1) from the exper-
imental density profiles and then comparing this result in
the liquid phase with the SPTequation of state. Importantly,
this allows the tilt angle, α, to be determined directly from
the experimental data via hg∥, which thus acts as a very
sensitive internal calibration mechanism (see Supplemental
Material [35]).
The density profiles as a function of the height, z,

rescaled by hg∥, and the full equations of state each fall
onto a single curve for systems at different tilt angles and
Figs. 1(b) and 1(c) show the density profile and equation of
state averaged over the six tilt angles considered. Note that
the individual density profiles and equations of state do not
vary with tilt angle (see Supplemental Material [35]), which
implies that we observe consistent results despite hg∥
changing by almost an order of magnitude. Also shown
are the SPT expressions for these quantities in the liquid
phase, which are in excellent agreement with the exper-
imental data. Strikingly, the equation of state exhibits a
discontinuity at ϕ ≈ 0.68, shown more clearly in the inset
of Fig. 1(c). This is a clear signature of a first-order
transition and the width of the coexistence region can be
roughly estimated from the equation of state as Δϕ ≈ 0.02,
which is in agreement with the width of the liquid-hexatic
coexistence region found in simulations of hard disks
[11–14]. The equation of state provides no evidence for
another first-order transition at higher area fractions.
Next, to characterize the nature of the different phases,

we calculate the height-resolved bond-orientational corre-
lation function in time, g6ðtÞ, and the modified Lindemann
parameter, γLðtÞ [20] (see Supplemental Material [35]).
While g6ðtÞ probes the bond-orientational order, allowing
the liquid and hexatic phases to be distinguished, the long-
time limit of γLðtÞ probes the translational order [20,29],
which enables the transition between the hexatic and crystal
phases to be identified. In Fig. 2(a) we show the behavior of
g6ðtÞ at a wide range of area fractions, i.e., different heights,
for the sample tilted by α ¼ 0.25°. As the area fraction
increases, there is a clear change from an exponential decay
at low ϕ, characteristic of a liquid, to g6ðtÞ attaining a
constant value at high ϕ as expected for a crystal. Crucially,
however, at intermediate values of ϕ, the decay is algebraic,
g6ðtÞ ∼ t−η6=2, characteristic of a hexatic phase. The corre-
sponding measurement of the modified Lindemann param-
eter for the same sample is shown in Fig. 2(b). Upon
increasing area fraction, γLðtÞ exhibits the transient sub-
diffusive behavior at intermediate times as expected for a
hard disk system upon increasing area fraction [34,43].
However, there is a systematic change from a linear long-
time behavior at low area fractions, characteristic of the
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z

z
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FIG. 1. The sedimentation-diffusion equilibrium for 2D colloi-
dal hard spheres. (a) A typical experimental image of the system
in sedimentation-diffusion equilibrium for a tilt angle of
α ¼ 0.56°. Inset, a schematic diagram of the experimental
geometry showing the effect of tilting the sample by a small
angle, α, and the resultant in-plane component of gravity. (b) The
density profile, ϕðzÞ, as a function of the height, z, rescaled by the
in-plane gravitational height, hg∥. The data shown are averaged
over samples at six different values of α, with error bars, arising
from the standard deviation of this average, smaller than the
symbol size. The solid red line indicates the prediction for the
density profile in the liquid phase from scaled particle theory
[41]. (c) The equation of state Π=ρkBT, averaged over six
different values of α, with error bars as in (b). The inset shows
an expanded view of the behavior of the equation of state in the
region of the discontinuity. The solid red line gives the prediction
of scaled particle theory for the range of area fractions character-
istic of a liquid, Π=ρkBT ¼ 1=ð1 − ϕÞ2. As a guide to the eye, the
solid blue line shows a semiempirical fit to the behavior at high ϕ
of Π=ρkBT ¼ a=ðϕcp − ϕÞ [42], where ϕcp is the area fraction at
close packing (ϕcp ≈ 0.91).
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liquid and hexatic phases, to a plateau at high area fractions,
characteristic of a crystal.
We further quantify the long-time behavior of both g6ðtÞ

and γLðtÞ by considering the ϕ dependence of the expo-
nents η6=2 for g6ðtÞ ∼ t−η6=2 and β for γLðtÞ ∼ tβ. For g6ðtÞ,
η6 is predicted to be undefined in the liquid, smaller than
1=4 in the hexatic phase and zero in the crystal [17,22]. For
γLðtÞ, β is unity in the liquid and hexatic phases and zero in
the crystal [20]. Both sets of exponents, averaged over the
six samples at different tilt angles are plotted in Fig. 2(c) for
0.60 < ϕ < 0.80. Here, η6=2 is close to zero at high ϕ and
increases to a small but finite value at ϕ ≈ 0.70. The
exponent β is also close to zero at high ϕ but increases
towards unity at ϕ ≈ 0.73. The fact that the changes in the
values of the two exponents with decreasing ϕ do not
coincide, implies that first the translational order is lost at
ϕ ≈ 0.73 and then the bond-orientational order at ϕ ≈ 0.70.
Thus, the region between area fractions of approximately
0.70 and 0.73 displays exponents consistent with the
presence of a hexatic phase, which corresponds to a width
of approximately 2hg∥ [see Fig. 1(b) and Supplemental
Material [35]]. Crucially, we find that the behavior of the
exponents does not depend on the tilt angle (see
Supplemental Material [35]), again confirming that the
observed phase behavior is consistent across all tilt angles.
Notably, KTHNY theory predicts that the hexatic phase
becomes unstable at η6=2 ¼ 0.125 [17,20,22,29], consis-
tent with our value of η6=2 at ϕ ≈ 0.70. Furthermore, if the
range of area fractions we attribute to the hexatic phase
is compared to the position of the discontinuity in the
equation of state, we can infer that the first-order transition
is between the liquid and hexatic phases.
The discontinuity in the equation of state suggests a

coexistence region of Δϕ ≈ 0.02 for the first-order liquid-
hexatic transition. Yet we note that the error in directly
determining the area fraction from microscopy can be
relatively large [44], with even a small uncertainty in the

particle positions or diameter leading to variations in ϕ
comparable in size to the coexistence region. However, a
first-order liquid-hexatic transition is associated with a
well-defined interface between the two phases, which will
display thermal interface fluctuations. Crucially, these
fluctuations are directly related to the width of the coex-
istence region Δϕ (see Supplemental Material [35]). To
localize the interface between the bond-orientationally
disordered liquid phase and the bond-orientationally
ordered hexatic phase, we compute the hexagonal bond-
orientational order parameter ψ6 for all particles, and from
this the local orientation, θi ¼ argðψ6;i=6Þ, which varies
between 0° and 60° due to the hexagonal symmetry (see
Supplemental Material [35]). Figures 3(a)–3(d) show
Voronoi constructions for samples at four different values
of α, where the Voronoi cells have been colored according
to θi. These plots clearly show that there is a well-defined
liquid-hexatic interface, which allows the interface height,
hðx; tÞ, to be determined in each frame using tangent
hyperbolic fits to θiðzÞ for each bin along the x direction
(see Supplemental Material [35]). Note that localizing the
interface in this manner requires no arbitrary assumptions
to be made about the value of θi in each phase. The
interfaces obtained by this procedure are also shown in
Figs. 3(a)–3(d). Importantly, the amplitude of the interface
fluctuations, as quantified by root mean square width,ffiffiffiffiffiffiffiffiffi
hh2i

p
, is always less than the width of the hexatic phase

(≈2hg∥) and this difference strongly increases with decreas-
ing tilt angle, as 2hg∥ ∼ 1=α and

ffiffiffiffiffiffiffiffiffi
hh2i

p
∼ 1=α1=4 (see

Supplemental Material [35]).
The thermal fluctuations of the interface are then

analyzed by computation of the spatial height-height
correlation function, ghðxÞ ¼ h½hðx0Þ − h̄ðx0Þ�½hðx0 þ xÞ−
h̄ðx0 þ xÞ�ix0;t, where h̄ðxÞ is the mean interface height
for all frames [45]. From capillary wave theory (see
Supplemental Material [35]), this function is predicted to
decay as [45]

(a) (b) (c)

FIG. 2. Characterization of the liquid, hexatic, and crystal phases. (a) The height-resolved bond-orientational correlation function in
time, g6ðtÞ, for the sample at α ¼ 0.25° for all bins across the whole range of area fractions. Note that a legend is only provided for the
data between 0.65 < ϕ < 0.76. (b) The corresponding height-resolved modified Lindemann parameter, γLðtÞ, for the same sample. The
legend in panel (a) also applies to panel (b). (c) The variation in the exponents η6=2 and β with ϕ in the region of the transitions. Error
bars indicate the standard deviation of the average over samples at six different tilt angles.
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ghðxÞ ¼
kBT
2Γ

Lc expð−x=LcÞ; ð2Þ

where Lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ=Δ~ρg sin α

p
is the capillary length, g the

acceleration due to gravity, Δ~ρ ¼ ρhex − ρliq the mass
density difference between the hexatic and liquid phases
and Γ the anisotropic interfacial stiffness. In Fig. 3(e) we
show ghðxÞ=ghðx ¼ 0Þ as a function of x=Lc, averaged over
the six values of α, and find excellent agreement with an
exponential decay as predicted by Eq. (2). The two
independent parameters, ghðx ¼ 0Þ ¼ kBTLc=ð2ΓÞ and
Lc, extracted from fitting Eq. (2) to the data for each tilt
angle α, both depend upon Γ and Δ~ρ. By first resolving the
value of Γ for each sample (see Supplemental Material
[35]), we are then able to plot the variation of ghðx ¼ 0Þ and
Lc as functions of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Γ sin α

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ= sin α

p
, respectively,

as shown in Figs. 3(f) and 3(g). Importantly, the gradients
of these linear plots are directly related to the mass density
difference between the liquid and hexatic phases, Δ~ρ,
and as such give a quantitative measure of the width of
the coexistence gap, Δϕ. From this analysis we find values
ofΔϕ to be 0.022 and 0.019 from Figs. 3(f) and 3(g), which
is in excellent agreement with both the apparent coexist-
ence gap in our equation of state and results from
simulations [11–14].
From our experimental results the following picture of

the phase behavior of hard disks emerges. The exponents
associated with time-correlation functions clearly indicate
the presence of three phases: liquid, hexatic, and crystal.
The liquid-hexatic transition is found to be first order, with
a coexistence region of ϕ ≈ 0.68–0.70. A quantitative

measure of the size of this coexistence gap is obtained
by analyzing the fluctuations of the interface between
the liquid and hexatic phases and independently found
to be Δϕ ≈ 0.02. The hexatic phase is observed for
0.70 < ϕ < 0.73, with the hexatic-crystal transition at
ϕ ≈ 0.73. The absence of a second discontinuity in the
equation of state at this area fraction indicates that this
transition is continuous. This experimentally established
phase behavior is in excellent agreement with that
observed in simulations [11], especially if it is noted
that very small out-of-plane fluctuations shift the phase
transitions to lower ϕ [13]. We also note that our results
differ from those obtained for soft dipolar colloidal
systems [19–23], consistent with the dependence of the
melting scenario on the details of the particle interactions
[14]. With this study we therefore provide a definitive
experimental elucidation of the full phase behavior of
hard disks and thereby the fundamental cornerstone
for the further understanding and development of 2D
materials.
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