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We measure the field dependence of spin glass free energy barriers in a thin amorphous Ge:Mn film
through the time dependence of the magnetization. After the correlation length ξðt; TÞ has reached the film
thickness L ¼ 155 Å so that the dynamics are activated, we change the initial magnetic field by δH.
In agreement with the scaling behavior exhibited in a companion Letter [M. Baity-Jesi et al., Phys. Rev.
Lett. 118, 157202 (2017)], we find that the activation energy is increased when δH < 0. The change is
proportional to ðδHÞ2 with the addition of a small ðδHÞ4 term. The magnitude of the change of the spin
glass free energy barriers is in near quantitative agreement with the prediction of a barrier model.
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Introduction.—The effect of a magnetic field on spin
glass dynamics has been a source of controversy for almost
twenty-five years. Mean field solutions lead to a phase
transition in the presence of a magnetic field, the de
Almeida–Thouless transition [1], while the droplet model
[2–6] predicts the vanishing of the spin glass state no matter
how small the magnetic field. Though the two are contra-
dictory, they are difficult to distinguish experimentally
[7–10]. For example, both predict a length scale, L,
dependent maximum barrier height, but with differing
dependence upon L (see below). In addition, both predict
a decrease in effective waiting times [11,12] proportional to
the square of the magnetic field strength (Refs. [8] and [13],
respectively). The present Letter probes the nature of these
dynamics in the presence of a magnetic field.
The study of spin glass dynamics, especially in reduced

dimensions, provides a window into the slow response of
disordered and glassy systems [14]. Further, the approach
to critical behavior has analogies with structural glasses
[15]. Characteristic times for spin glass response can vary
from laboratory time scales to impossibly long times as a
consequence of highly degenerate states well separated in
phase space [16].
This Letter reports measurements of the effect of

magnetic field changes on the free energy barriers in thin
film spin glasses, where the correlation length, ξðt; TÞ, at
time t and temperature T is confined by ξðt; TÞ ≤ L, the
film thickness. The number of participating spins N is the
order of ∼ðL=a0Þ3, where a0 is the average distance
between spins. Our results demonstrate experimentally that
spin glass free energy barriers are affected as the square of
magnetic field changes, consistent with [8,13], plus a small
fourth order term. An accompanying Letter by Baity-Jesi
et al. [17], using numerical simulations on Janus II arrives
at equivalent conclusions. The magnitude of the effect is
consistent with a barrier model [8] estimate based on the
observed magnetization. A trap model [18,19] would

predict a change in barrier heights linear in the change
of magnetic field. However, at the fields used in our
experiments, it is found to be too small by around two
orders of magnitude from that which we observe.
Spin glass dynamics at the mesoscale (length scales

1 ≤ L ≤ 100 nm) [20] are achievable in thin film multi-
layers [14,21–24], and have been reported for a Ge:Mn thin
film [25]. The beauty of thin film spin glasses with
mesoscopic thickness L lies with the growth on laboratory
time scales of the spin glass correlation length ξðt; TÞ from
ξðt; TÞ ≤ L to ξðtco; TÞ ¼ L for t < tco to t ¼ tco, defining
the crossover time tco. After ξðt; TÞ reaches L, there is no
further growth of ξðt; TÞ at fixed temperature on laboratory
time scales.
The growth of ξðt; TÞ from nucleation is different

between the two models introduced in the first paragraph.
The droplet model [2–6] assumes activated growth and
finds

ξðt; TÞ ¼ αa0

��
T
Tg

�
ln

�
t
τ0

��
1=ψ

; ð1Þ

where α is a normalization constant of order unity, τ0 is an
exchange time of the order of ℏ=ðkBTgÞ, and ψ is a critical
exponent. Experiments [26–28] and simulations [29,30]
find values of ψ between 0.65 and 1.1, with most values
close to unity. The spin glass dynamics are activated when
ξðt; TÞ ¼ L with the largest activation energy,

ΔmaxðLÞ
kBTg

¼
�

L
αa0

�
ψ

: ð2Þ

The model based on the mean field solution [31–33] uses
a power law growth for ξðt; TÞ,

ξðt; TÞ ¼ c1a0

�
t
τ0

�
c2ðT=TgÞ

; ð3Þ
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where c1 and c2 are constants determined from experiment.
The dynamics are also activated when ξðt; TÞ ¼ L with the
largest activation energy,

ΔmaxðLÞ
kBTg

¼ 1

c2

�
ln

�
L
a0

�
− ln c1

�
: ð4Þ

Thus, both models predict activated dynamics when
ξðt; TÞ ¼ L, but with differing dependence upon the length
scale L. This Letter does not attempt a choice between
models. It suffices to say that what is reported is the
magnetic field dependence of the largest free energy
barrier, the activation energy ΔmaxðLÞ.
The actual measurements of spin glass dynamics require

the presence of a magnetic field H. If the spin glass is
rapidly cooled from above the spin glass transition temper-
ature Tg to a quench temperature Tq below Tg in zero
magnetic field, dynamics are generated upon the applica-
tion of a magnetic field through measurement of the zero-
field-cooled (ZFC) magnetization MZFCðt; HÞ. If the spin
glass is cooled in a magnetic field from above Tg to Tq, and
the magnetic field is reduced to 0, the measured magneti-
zation is the thermoremanent magnetization (TRM) and
termed MTRMðt; HÞ. We are omitting discussion of the
waiting time effect [11,12] because it is irrelevant as long as
t ≥ tco. We exhibit experimental results below of magnetic
field changes upon ΔmaxðLÞ for a thin film Ge:Mn (155 Å)
spin glass. After that we analyze the experimental results in
terms of the power law dependence of δΔmax on the change
of magnetic field δH, and then follow up with a summary.
Experimental results.—The experiments were performed

on thin amorphous Ge:Mn (11 at % Mn) films of thickness
155 Å with a glass temperature Tg ≈ 24 K [34]. Previous
experiments have shown this insulating system to exhibit
spin glass properties [34,35], not unlike EuxSr1−xS [36],
an insulating canonical spin glass system. Further, the
behavior of the field-cooled (FC) magnetization is very
similar to that found for insulating EuxSr1−xS [36] and the
thinnest Cu:Mn films by G. G. Kenning et al. [21]. All the
dynamical measurements [25] on these films are consistent
with the usual spin glass systems, establishing confidence
in the generality of effects seen in Ge:Mn films.
This amorphous Ge:Mn thin film sample was quenched

to a temperature Tq ¼ 21.5 K in zero magnetic field. The
quench temperature Tq was chosen so that ξðt; TÞ could
grow to the thickness of the sample, L, on a reasonable
laboratory time scale. Previous measurements [25] found
this crossover time to be about tco ≈ 6.8 × 104 sec, or
about 19 hours. In our experiments, after the temperature is
stabilized at Tq, a magnetic fieldH0 ¼ 50 G is applied, and
the system allowed to age for 20 hours. This ensures that
the correlation length has reached the sample thickness.
During this aging period, the zero-field-cooled magneti-

zation, MZFCðtÞ, increases, but the increase is sufficiently
slow that it remains well below the field-cooled value,MFC,

on this time scale. The slope of the irreversible component
of the magnetization, MFC −MZFCðt ≥ tcoÞ, yields Δmax ¼
37.5kBTg, as before [25].
The experiment was repeated exactly as above, but the

applied magnetic field (H0 ¼ 50 G) was reduced by δH
after 20 hours. The subsequent measured magnetization
Mðt; δH;H0Þ is exhibited in Fig. 1 as a function of time for
the representative values δH ¼ −5, −10, and −15 G. In all,
experiments using this protocol were performed with
δH ¼ −5, −10, −12.5, −15, and −17.5 G. Activated
behavior is seen in all, with ΔmaxðLÞ increasing as the
magnetic field is reduced. The irreversible part of the
magnetization, MFCðH0 þ δHÞ −Mðt; δH;H0Þ is plotted
in semilog scale in Fig. 2 for the representative values
δH ¼ −5, −10, and −15 G.
Figures 1 and 2 display a curious behavior at short times

after the magnetic field change. From Fig. 1, Mðt; δH;H0Þ
initially decreases with time until about ∼20; 000 sec,
when it turns around and begins to increase with time,
as expected for MZFCðtÞ. This is mirrored in Fig. 2 with an
initial rise in MFCðH0 þ δHÞ −Mðt; δH;H0Þ out to
∼20; 000 sec, after which activated decay is seen. The
system appears to be increasing its irreversible magneti-
zation initially after the magnetic field has changed. The
curing time for a return to activated decay for the
irreversible behavior is roughly the same as that found
for temperature chaos [25]. Figure 2 suggests that this
curing time is almost independent of the magnitude of the
reduction in magnetic field.
For times greater than ∼20; 000 sec, the decay of

MFCðH0 þ δHÞ −Mðt; δH;H0Þ is activated (Fig. 2). The
slopes of the decay curves for each value of δH generate

FIG. 1. Magnetization measurements,Mðt; δH;H0Þ, after zero-
field cooling at 21.5 K, and reducing the original magnetic field
H0 ¼ 50 G after twenty hours by representative values δH ¼ −5,
−10, and −15 G, as a function of time. Also plotted is the field-
cooled magnetization, MFCðH0 þ δHÞ, to which the measured
moment is approaching.
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values forΔmaxðH0 þ δHÞ [25]. Figure3plotsδΔmaxðδHÞ ¼
ΔmaxðH0 þ δHÞ−ΔmaxðH0Þ against δH. Twodependences,
δΔmaxðδHÞ ∝ δH and δΔmaxðδHÞ ∝ ðδHÞ2, are plotted
along with the data. It is clear from Fig. 3 that δΔmax varies
more rapidly than linear in δH. On the assumption of
higher-order nonlinearity in δΔmaxðδHÞ, we have added a
small ðδHÞ4 term to the quadratic fit [17]. The points can also
be fit with an analytic form a1ðδHÞ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2ðδHÞ2

p
[37].

Thevalues of the parameters used for these fittingprocedures
are given in Table I.
The χ2 goodness-of-fit probability,Q [38], is also listed in

Table I for each of the four proposed dependences. Not
surprisingly, as seen from Fig. 3, it is very small for
δΔmaxðδHÞ ∝ δH. Likewise, it is finite but small for
δΔmaxðδHÞ ∝ ðδHÞ2. The inclusion of the fourth order term
is convincing, with Q ≈ 0.88, though the additional fitting
parameter of course reduces thedegrees of freedomby1.The
analytic fit to the dependencea1ðδHÞ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2ðδHÞ2

p
has a

slightly smaller probability, Q ≈ 0.77, but is an arbitrary
form. The sum and substance of Fig. 3 and Table I is simply

that the data do not fit a linear dependence of δΔmaxðδHÞ on
δH, but rather a quadratic relationship with a small fourth
order term.
Previous experiments [8] have used the magnetic field

variation of the effective waiting time to determine the
magnetic field dependence of Δmax. They posit a reduction
in Δmax through the magnitude of the Zeeman energy
EZðHÞ from an effective waiting time teffw through [their
Eq. (4)]

Δmaxðtw; TÞ − EZðHÞ ¼ kBTðln teffw − ln τ0Þ: ð5Þ
Their experiments were conducted on bulk samples with a
concomitant distribution of length scales L, and therefore
exhibit an average over a distribution of ΔmaxðLÞ [24].
Further, the correlation length continues to increase in time
in their experiments, requiring the use of an effective
waiting time to extract the magnetic field dependence of
the barrier heights. Figure 2 in Ref. [8] exhibits a quadratic

FIG. 2. The logarithm of the irreversible part of magnetization,
log10½MFCðH0 þ δHÞ −Mðt; δH;H0Þ], for the representative
values δH ¼ −5, −10, and −15 G, plotted against the time.
The dashed straight lines, displaying activated behavior, give rise
to the values of ΔmaxðH0 þ δHÞ displayed in Fig. 3.

FIG. 3. Plot of the measured increases of the maximum barrier
height, ΔmaxðH0 þ δHÞ as a function of the reductions in
magnetic field δH. Shown on the figure are curves for the fit
to a linear variation in δH (dotted line), and a quadratic variation
in δH (dashed line), with the addition of a small fourth order term
to the quadratic variation (solid line). The numerical fitting values
are given in Table I.

TABLE I. Parameters used for the best fits to the data exhibited in Fig. 3. There are two higher-order nonlinear forms,
indistinguishable from one another in Fig. 3. One is a simple sum of quadratic and quartic terms; the other is suggested by the
analysis in the accompanying Letter [17]. The uncertainties of Δmax in Fig. 3 are used as estimates of the standard deviations for each of
the measurements to calculate Q [38].

Fit a1 a2 rms error R-squared χ2 goodness-of-fit, Q

a1ðδHÞ1 −7.16 × 10−2 G−1 0.291 0.793 2 × 10−16

a1ðδHÞ2 5.00 × 10−3 G−2 0.111 0.970 0.0663
a1ðδHÞ2 þ a2ðδHÞ4 3.01 × 10−3 G−2 8.03 × 10−6 G−4 0.048 0.995 0.8787

a1ðδHÞ2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2ðδHÞ2

p
3.67 × 10−3 G−2 −1.80 × 10−3 G−2 0.056 0.994 0.7686
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dependence of log teffw vs H2 for small H, and hence a
quadratic reduction in barrier heights Δ with magnetic
field. This is equivalent to our extraction of δΔmax with
ðδHÞ2. However, our experiments are conducted on a
mesoscopic thin film with a single thickness L. As a
consequence, the correlation length growth terminates at
the length scale L. There is no averaging in our experi-
ments: ΔmaxðLÞ is set by the thin film thickness, enabling a
very accurate determination of the values for δΔmax as a
function of magnetic field change. These differences
distinguish the present set of experiments from those
in Ref. [8].
Analysis of experimental results.—Because the lower

critical dimension for spin glasses, dl ≈ 2.5 [39–41], a spin
glass at dimension d ¼ 3 exhibits a finite glass transition
temperature Tg, while a spin glass at dimension d ¼ 2 has
Tg ¼ 0. As a consequence, as outlined in Ref. [24], the
spin glass correlation length is anisotropic at t > tco.
The component perpendicular to the film layer saturates
at ξ⊥ ¼ L, while the parallel component, ξ∥, experiences
d ¼ 2 critical fluctuations. A scaling form [37], built on the
assumption of multiplicative growth consistent with
Ref. [24], suggests that ξ∥ðTÞ saturates at

ξ∥ðTÞ ¼ kðTÞL ¼ bðTg=TÞν2dL: ð6Þ
Here, b is a constant of order unity, and ν2d is the usuald ¼ 2
critical exponent, ν2d ≈ 3.53ð7Þ [42]. The correlated
spins thus have a pancakelike structure, with the parallel
dimension larger than the perpendicular dimension,
the former increasing with decreasing temperature. The
volume of the correlated spins is that of the pancake
described above, encapsulated in the perpendicular direction
by L and in the parallel direction by the area, π½ξ∥ðTqÞ�2 ¼
πb2L2ðTg=TqÞ2ν2d .
It is interesting to investigate the magnitude of the two

predictions of the variation of Δmax with magnetic field
change. The trap model [18,19] “associates a typical
Zeeman energy EðΔHÞ to the field variation ΔH” for
the reduction of the effective trap depth. The authors take

δEZðδHÞ≡ δEZðN; δHÞ ¼ mμB
ffiffiffiffi
N

p
δH: ð7Þ

The magnetic moment M ¼ mμB refers to “single spins,
but also renormalized groups of spins.” Because of the
“random nature of the interactions and the frustration they
cause, the net uncompensated moment for a group of N
spins is of the order of

ffiffiffiffi
N

p
.” Thus, the trap model predicts a

linear relationship between the change in the Zeeman
energy and the change in magnetic field.
The number of spins, N, contained within the correlated

volume in the Ge:Mn 11 at % 155 Å film ða0 ¼ 5.3 ÅÞ is
approximately 170,840, so that

ffiffiffiffi
N

p
≈ 413. Taking m ∼ 1,

Eq. (7) reduces to δEZðδHÞ ∼ 0.3 K for δH ¼ −10 G.
From Fig. 3, δEZðδH ¼ −10 GÞ ∼ 0.4 Tg ∼ 10 K, so that
Eq. (7) is too small by around 2 orders of magnitude.

However, our experiments were performed in significant
magnetic fields. The fluctuation result of Eq. (7) is surely
relevant in experiments carried out in 0 or very small
magnetic fields.
Use of Eq. (5) reduces the values of the free energy

barrier Δ uniformly by the change in the Zeeman energy,
EZðHÞ. The difference for mesoscopic systems is that the
reduction is independent of time for t ≥ tco. That is, in an
obvious notation, ΔmaxðL; H0 þ δHÞ is given by

ΔmaxðL; H0 þ δHÞ ¼ ΔmaxðL; H0Þ − δEZðδHÞ ð8Þ

and we measure ΔmaxðL; H0 þ δHÞ directly as described
above. The barrier model [8] sets

EZðHÞ ¼ NχFCH2; ð9Þ

where N “defines a volume over which the spins are
effectively locked together for barrier hopping, the radius of
which we define as the spin glass correlation length ξðt; TÞ”
[8]. In our case, we take the volume to be π½ξ∥ðTqÞ�2ξ⊥ ¼
πb2L3ðTg=TqÞ2ν2d as before. The field-cooled magnetic
susceptibility per spin in [8] was taken as χFC because the
authors were measuring the time dependence of the
thermoremanent magnetization, MTRMðtÞ. In our case it
is the zero-field-cooled magnetization,MZFCðtÞ. Given how
close MZFCðtÞ is to MFC in our experiments, the difference
is negligible.
From Fig. 1, the field-cooled magnetic moment MFC ≈

6.4 × 10−6 emu for H ¼ 40 G. Using Eq. (9), we get [24]

δEZ ¼ 2NχFCHδH ¼ 2N

�
MFC

Nt

�
δH

≈ 2MFC

�
πb2L3

�
Tg

Tq

�
2ν2d

�
Vs

�
δH; ð10Þ

where Nt is the total number of spins in the sample and
Vs ¼ 2.06 × 10−6 cm3, the total volume of the sample,
using the known thickness and estimated area. Using
L ¼ 15.5 nm, b equal to unity, Tg ¼ 24 K, Tq ¼ 21.5 K,
ν2d ¼ 3.53, we find δEZ ∼ 11.4 K for δH ¼ −10 G, very
close to the measured value for δEZðδH ¼ −10 GÞ ∼10 K
in Fig. 3.
Summary.—The reduction in the free energy barrier

height responsible for spin glass dynamics at the mesoscale
is measured as a function of magnetic field change in a
155 Å Ge:Mn 11 at % thin film. It is found that the
magnitude of the reduction varies as the square of the
change in magnetic field, ðδHÞ2 with a small ðδHÞ4 term.
This result is consistent with the scaling laws of a
companion Letter [17]. Quantitative estimates of two
prevalent models are also presented. The magnitude of
the prediction of a trap model appears to be too small to fit
the data by nearly 2 orders of magnitude for the magnetic
fields used in these experiments. A barrier model

PRL 118, 157203 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

14 APRIL 2017

157203-4



predicated on a change of the maximum barrier height
ΔmaxðL; HÞ with a change of magnetic field agrees with the
measurements, both in terms of the relationship to the
change in magnetic field, and nearly quantitatively with its
magnitude.
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