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We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-
glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect.
Secondly, we determine the scaling behavior that allows a quantitative analysis of a new experiment
reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The
value of the coherence length estimated through the analysis of microscopic correlation functions turns out
to be quantitatively consistent with its measurement through macroscopic response functions. Further,
nonlinear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same
microscopic length.
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Introduction.—It has long been suspected that the exceed-
ingly slow dynamics that disordered and glassy systems
(spin glasses, superspin glasses, colloids, polymers, etc.)
exhibit upon cooling is due to the increasing size of the
cooperative regions [1], which one would like to describe in
terms of a correlation length ξ. The standard way of
accessing ξ is measuring the structure factor in a neutron-
scattering experiment. Unfortunately, this approach is
unsuitable for experiments on glassy systems, because their
structure factors show no trace of a growing length scale.
Yet, for example, for spin-glass systems, the replica

method provides a microscopic approach to obtain the
correlation functions of the overlap field [2–15], which
decay with a correlation length ξmic. Unfortunately, these
correlation functions are only easy to access through
numerical simulations, since computing replicas requires
direct access to the microscopic configurations.

In spite of the above difficulties it has been possible to
develop effective techniques to measure ξ in real experi-
ments. The state-of-the-art techniques are based on non-
linear responses to external perturbations. Very often these
measurements are carried out in a nonequilibrium regime.
If the temperature is low enough, ξ grows sluggishly but
also indefinitely (unless the sample has a film geometry
[16,17]). For spin glasses and superspin glasses, the
magnetic response to an external magnetic field is accu-
rately measured with a SQUID. A delicate analysis of this
response yields a macroscopic correlation length, which we
denote by ξmac, as a function of time. In the case of glass-
forming liquids, one can study the dielectric polarizability.
Here we implement numerically, for the first time, on the

Ising spin glass, the seminal experimental protocol intro-
duced in [18], which is now a crucial protocol for spin-glass
experiments [16,19]. Thanks to our dedicated computers
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Janus [20] and Janus II [21], the system size and the time
scales reached in our simulation allow us to assert the
mutual consistency of the correlation lengths obtained
through macroscopic response, ξmac, and the length scale
ξmic derived from the direct measurement of the overlap
correlation function.
Our analysis unveils a scaling law describing how the

magnetic response depends both on the applied magnetic
field H and on the size ξmic of the magnetic domains.
Remarkably, this scaling law is already very useful in the
analysis of the experiment by Guchhait and Orbach
described in the companion Letter [22].
The reader is probably aware of the long and ongoing

controversy about the nature of the spin-glass phase. The
replica symmetry breaking theory [23] predicts a spin-glass
transition in a field [24], while the droplet model predicts
that the magnetic field (no matter how small) avoids the
transition [25–28]. In particular, the dynamics of a spin
glass in a field has been analyzed within the context of the
droplet model [29]. However, it has been difficult for
experiments to distinguish both theories [18,30–33],
because the two predict a barrier height that depends on
the length scale ξmic. Fortunately, our analysis completely
avoids this controversy.
Finally, we link our results to the physics of glass-

forming liquids through a study of the nonlinear suscep-
tibilities χ3 (see below). To date it has not been possible to
reproduce the delicate experimental protocol of Ref. [18]
for supercooled liquids or glasses. However, χ3 [34] (and
also χ5 [35]) can be measured and do grow. We find that in
our spin-glass simulation χ3 has a well-defined scaling
form as a power of ξmic.
Model and protocol.—We study the Edwards-Anderson

model in a three-dimensional,D ¼ 3, cubic lattice of linear
size L, with periodic boundary conditions. Our N ¼ LD

Ising spins, σx ¼ �1, interact with their lattice nearest
neighbors through the Hamiltonian

H ¼ −
X
hx;yi

Jx;yσxσy −H
X
x

σx: ð1Þ

The couplings Jx;y take the values�1with 50% probability.
In the absence of a magnetic field, H ¼ 0, this model
undergoes a spin-glass transition at the critical temperature
Tc ¼ 1.102ð3Þ [36]. The value of the dimensionless mag-
netic field H used in the numerical simulation can be
matched to the physical one. For the Ising spin-glass
Fe0.5Mn0.5TiO3 we find Hexperimental ≈ 50 kG ×H [37].
This matching is likely to be strongly dependent on the
material under consideration.
We describe succinctly our simulation protocol (for

details see the analysis of the aging linear response in
[40]). We consider a large system (with L ¼ 80 or 160,
large enough to avoid relevant finite-size effects). The
initial random spin configuration is placed instantaneously
at the working temperature T ¼ 0.7 ≈ 0.64Tc and left to

relax for a time tw, with H ¼ 0. At time tw, the magnetic
field is turned on and we start recording the magnetization
density, m ¼ P

xσx=N. We write mðtþ tw; tw;HÞ to
emphasize that the system is perennially out of equilibrium
(and, hence, tw dependent). In the following the symmetry
under the inversion of the magnetic field,mðtþ tw;tw;HÞ¼
−mðtþ tw;tw;−HÞ, is crucial.
Scaling.—As the system relaxes at the working temper-

ature for a time tw, the size of the glassy domains grows.
The overlap correlation function C4ðr; twÞ [41] decays with
the distance r as C4ðr; twÞ ¼ fc½r=ξmicðtwÞ�r−θ [3,10,11].
The cutoff function fcðxÞ decays faster than exponentially
at large x. The exponent θ ¼ 0.38ð2Þ [11,42] is crucial in
our analysis. The microscopic coherence length grows with

time as ξmicðtwÞ∝t1=zðTÞw , with zðT¼0.7Þ¼11.64ð15Þ [11].
In equilibrium conditions and for large ξmic, there is a

well-developed scaling theory for the magnetic response to
an external field; see, e.g., [43,44]. However, dynamic
scaling [45] suggests borrowing the equilibrium formulas,
and replacing the equilibrium ξmic by the aging ξmicðtþ twÞ
(as obtained at H ¼ 0). This bold approach has been
successfully tested for spin glasses close to Tc [13,14]
(and, to a small extent, also for glass-forming liquids [35]),
thanks to the relation

mðtþ tw; tw;HÞ ¼ ξyh−Dmic F ðH½ξmicðtþ twÞ�yh ;Rt;twÞ; ð2Þ

where yh is a scaling dimension that we now determine,
Rt;tw ≡ ξmicðtþ twÞ=ξmicðtwÞ, and the scaling function
F ðx;RÞ is odd on its first argument for symmetry reasons.
As we show below, see Fig. 1’s inset, we are interested in
the regime t ≈ tw where the approximationRt;tw ≈ 1 is safe

FIG. 1. The function Sðtþ tw; tw;HÞ, Eq. (5), versus the time t
elapsed after switching on the external magnetic field H. In the
top panel we show the H → 0 extrapolation for several waiting
times tw (one unit of computer time roughly corresponds to one
picosecond of physical time [46]). Bottom: Sðtþ tw; tw;HÞ as a
function of t for our largest waiting time tw ¼ 230 and for
different values of H. Inset: The peak position (H → 0), in units
of tw, depends on tw only for tw < 106.
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[40]. Therefore, ξmicðtwÞ is the relevant length scale from
now on.
The (generalized) susceptibilities χ1; χ3; χ5;… are

defined from the Taylor expansion

mðHÞ ¼ χ1H þ χ3
3!

H3 þ χ5
5!

H5 þOðH7Þ; ð3Þ

where we omitted the t and tw dependencies ofm and of the
susceptibilities to simplify our notation. Matching Eqs. (2)
and (3), we find the scaling behavior χ2n−1 ∝ ½ξðtwÞ�2yhn−D.
At least in equilibrium, χ3 is connected to the space integral
of the microscopic correlation function C4ðr; twÞ [47]. We
thus conclude that

2yh ¼ D −
θ

2
: ð4Þ

Taking θ from [11,42], we find 2yh ¼ 2.81ð1Þ. Although
2yh is sometimes referred to as the fractal dimension of the
glassy domains [6,19,35,48], we regard it as just a scaling
dimension [49] (the droplet model prediction is 2yh ¼ D).
Simulating the experiment.—The main quantity used in

the experiment of [18] is

Sðtþ tw; tw;HÞ ¼ ∂
∂ log t

�
mðtþ tw; tw;HÞ

H

�
: ð5Þ

This quantity, shown in Fig. 1, has a local maximum at time

tðHÞ
max. The time scale tðHÞ

max was interpreted by Joh et al. as
representative of the free-energy barriers ðtw;HÞ that are

relevant at time tw: t
ðHÞ
max ∝ exp½Δ=kBT� [18] (see also the

numerical computation in Ref. [29]).
Sðtþ tw; tw;HÞ depends on two time scales, t and tw, as

is typical of aging systems [57]. However, we want to use S
to extract information from the single-time ξmacðtwÞ. The
paradox is solved in the inset of Fig. 1, where we show that,

when tw is large enough, the ratio tð0
þÞ

max =tw becomes
independent of tw: we are, in these conditions, in the
asymptotic regime. This regime is also reached, at signifi-
cantly shorter tw, with Gaussian couplings [29].
The maximum tðHÞ

max decreases upon increasing H; see
Fig. 1—bottom. This reflects the lowering of the barriers Δ
due to the Zeeman effect of the (glassy) magnetic domains
[18]. From Eq. (2), and given the H ↔ −H symmetry, it is
natural to expect the Zeeman effect to be described through
a smooth scaling function

log
tðHÞ
max

t0
þ

max
¼ FZeemanðxÞ; x ¼ H2½ξmicðtwÞ�D−ðθ=2Þ; ð6Þ

where t0
þ

max is the extrapolation to H ¼ 0 of tðHÞ
max. As Fig. 2

shows, this scaling holds for values of the scaling variable
as large as x ≈ 6: we have a very good scaling for close to 3
orders of magnitude. Up to that value, we find that the
scaling function can be parametrized as FZeemanðxÞ ¼
c1xþ c2x2. In other words, for small H we expect the

Zeeman energy to be proportional to H2 with sizable
corrections of order H4. To the best of our knowledge,
the explicit scaling form in Eq. (6) has never been used in
the analysis of experimental data. Yet the authors of the
original experiment [18] fitted their data at fixed tw to

log
tðHÞ
max

t0
þ

max
¼ ANfðtwÞH2; ð7Þ

where A is a tw-independent constant. NfðtwÞ was inter-
preted as the number of spins in a correlated domain, and
hence

ξmacðtwÞ ¼ ½NfðtwÞ�1=D: ð8Þ
Equations (7) and (8) can be seen as the first-order
expansion of Eq. (6). In fact, the smallness of exponent
θ implies that the small correction ½ξmacðtwÞ�θ=2 can easily
go unobserved.
Figure 3 shows ξmacðtwÞ ¼ ½NfðtwÞ�1=ðD−θ=2Þ [we

obtained NfðtwÞ from the fit to Eq. (7)]. Since different
determinations of the correlation length should coincide
only up to a multiplicative constant of order 1, we have not
fitted for A, choosing instead A ¼ 1. It is clear that ξmacðtwÞ
and ξmicðtwÞ have the same behavior.
Finally, let us remark that in Ref. [58] it was suggested

that Ising spin glasses should have a Zeeman energy of
order H. On theoretical grounds, this is not possible for
protocols respecting the symmetryH ↔ −H. However, we
found that for 1 < x < 4 a best fit to the form FZeemanðxÞ ¼
d1 þ d2

ffiffiffi
x

p
gives an acceptable value of χ2, but one gets

that d1 ≠ 0, which implies an unphysical value for the
H → 0 extrapolation. Only a careful control of the limit of
vanishing field (see the companion Letter by Guchhait
and Orbach [22]) reveals that the true behavior for small H
is proportional to H2. In practice, the transient behavior

FIG. 2. The Zeeman energy follows the scaling form suggested
in Eq. (6). We show a fit to FZeemanðxÞ ¼ c1xþ c2x2. Inset: the
data of the main panel do not collapse when plotted as a function
of H2.
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of FZeemanðxÞ implies that one could fit the data to the
form

log
tðHÞ
max

t0
þ

max
¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NfðtwÞH2

q
; ð9Þ

and then extract ξmacðtwÞ¼½NfðtwÞ�1=ðD−θ=2Þ (again, A0¼1).
Although Eq. (9) is incorrect for small values of H, the
scaling law Eq. (6) implies that one still obtains a reasonable
determination of ξmac, as we indeed find [see Fig. 3, where
we also show ξmacðtwÞ obtained from this approach].
Nonlinear susceptibilities.—At variance with spin

glasses [18], the detection of a large correlation length
accompanying the glass transition is still an open problem
for supercooled liquids [59]. It is now clear that linear
responses are not up to the task [34,60], so higher-order
nonlinear responses are currently under investigation
[34,35,61]. However, even in the more familiar context
of spin glasses the connection between χ3ðtþ tw; twÞ and
ξmicðtwÞ needs to be clarified.
To make some progress, we extract generalized suscep-

tibilities such as χ3 through Eq. (3). Figure 4 (top) shows
that χ3ðtþ tw; twÞ has a tw-independent regime for t ≪ tw
(the time-translational invariant regime [57]; see also [62]).
Yet, it displays a peak as a function of t, whose position and
height are strongly tw dependent. In fact, we empirically
find [see Fig. 4 (bottom)] the following scaling behavior for
large enough values of t and tw:

χ3ðtþ tw; twÞ ¼ ½ξmicðtwÞ�D−θGðt=twÞ: ð10Þ

The prefactor ½ξmicðtwÞ�D−θ follows from Eqs. (2)–(4).
Deriving the details of the function Gðt=twÞ requires
further work.
Conclusions.—Using the dedicated computers Janus and

Janus II, we have studied the aging magnetic response of an
Ising spin glass to an applied field. In this way, we have
simulated a milestone experiment [18], and we have shown
that the glassy correlation length extracted from this
macroscopic response is numerically consistent with its
microscopic determination from overlap correlation func-
tions. Furthermore, we have unveiled scaling laws that
relate the magnetic response to the applied field and the
correlation length. We expect that this scaling analysis
will be useful in future experiments on film geometry. Our
scaling analysis has been relevant for the study of the
experiment reported in the companion Letter [22]. The
agreement with experiments is even more impressive when
one notices that we are comparing numerical time scales of
the order of the millisecond to experimental time scales
of the order of the hour: this looks like a very nice piece of
evidence for invariance in time scales.
Although the delicate experimental study of Ref. [18]

has not yet been carried out for glass-forming liquids, the
dielectric polarizability analogue of the nonlinear suscep-
tibilities is measured in current experiments [34,35]. We
have shown that these susceptibilities scale as powers of the
microscopically determined correlation lengths.
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for sharing with us their data prior to publication [22], and
for a most fruitful exchange of ideas. We thank the staff of

FIG. 3. The time growth of the correlation length ξmic, as
obtained from the microscopic correlation function C4ðr; twÞ
[10,11,40], is compared to the length ξmac obtained from a fit
linear in H2; see Eq. (7). The microscopic time scale τ0 ¼ 1
corresponds to a single lattice sweep in our Monte Carlo
simulation (see the caption to Fig. 1). We also show the results
obtained with Eq. (9), which are sensible as well. The temper-
ature-dependent scaling variable, T logðtw=τ0Þ, is common in the
experimental literature (e.g., see Ref. [19]).

FIG. 4. The nonlinear susceptibility χ3 is shown as a function of
t for several values of tw (top), as obtained from Eq. (3). The
difficulty lies in balancing systematic errors (numerical data
obtained with high fields underestimate χ3) with statistical errors
(which are larger for small values ofH). Our compromise, shown
here, tries to obtain statistical and systematic errors of comparable
size. In the bottom panel we show the Gðt=twÞ scaling function
(10). Note that scaling corrections are visible only for the smallest
waiting times (and, even in those cases, they only appear for
small t=tw).

PRL 118, 157202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

14 APRIL 2017

157202-4



BIFI supercomputing center for their assistance. We thank
M. Pivanti for his contribution in the early stages of the
development of the Janus II computer. We also thank Link
Engineering (Bologna, Italy) for its crucial role in the
technical aspects related to the construction of Janus II. We
thank EU, Government of Spain and Government of
Aragon for the financial support Fonds Européen de
Développement Régional (FEDER) of Janus II’s develop-
ment. This work was partially supported by Ministerio de
Economía, Industria y Competitividad (MINECO) (Spain)
through Grants No. FIS2012-35719-C02, No. FIS2013-
42840-P, No. FIS2015-65078-C2, No. FIS2016-76359-P,
and No. TEC2016-78358-R, by the Junta de Extremadura
(Spain) through Grant No. GRU10158 (partially funded by
FEDER) and by the DGA-FSE (Diputación General de
Aragón–Fondo Social Europeo). This project has received
funding from the European Union’s Horizon 2020 research
and innovation program under the Marie Skłodowska-
Curie Grant No. 654971. This project has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
program (Grant No. 694925). D. Y. acknowledges support
by Grant No. NSF-DMR-305184 and by the Soft Matter
Program at Syracuse University. M. B. J. acknowledges
financial support from ERC Grant No. NPRGGLASS.

*Corresponding author.
beaseobar@gmail.com

[1] G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
[2] H. Rieger, J. Phys. A 26, L615 (1993).
[3] E. Marinari, G. Parisi, J. Ruiz-Lorenzo, and F. Ritort, Phys.

Rev. Lett. 76, 843 (1996).
[4] J. Kisker, L. Santen, M. Schreckenberg, and H. Rieger,

Phys. Rev. B 53, 6418 (1996).
[5] E. Marinari, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-

Lorenzo, J. Phys. A 33, 2373 (2000).
[6] L. Berthier and J.-P. Bouchaud, Phys. Rev. B 66, 054404

(2002).
[7] L. Berthier andA. P. Young, Phys. Rev. B 69, 184423 (2004).
[8] S. Jiménez, V. Martín-Mayor, and S. Pérez-Gaviro, Phys.

Rev. B 72, 054417 (2005).
[9] L. C. Jaubert, C. Chamon, L. F. Cugliandolo, and M. Picco,

J. Stat. Mech. (2007), P05001.
[10] F. Belletti et al. (Janus Collaboration), Phys. Rev. Lett. 101,

157201 (2008).
[11] F. Belletti et al. (Janus Collaboration), J. Stat. Phys. 135,

1121 (2009).
[12] C.-W. Liu, A. Polkovnikov, A. W. Sandvik, and A. P.

Young, Phys. Rev. E 92, 022128 (2015).
[13] L. A. Fernández and V. Martín-Mayor, Phys. Rev. B 91,

174202 (2015).
[14] M. Lulli, G. Parisi, and A. Pelissetto, Phys. Rev. E 93,

032126 (2016).
[15] M. Manssen and A. K. Hartmann, Phys. Rev. B 91, 174433

(2015).
[16] S. Guchhait and R. Orbach, Phys. Rev. Lett. 112, 126401

(2014).

[17] S. Guchhait, G. G. Kenning, R. L. Orbach, and G. F.
Rodriguez, Phys. Rev. B 91, 014434 (2015).

[18] Y. G. Joh, R. Orbach, G. G. Wood, J. Hammann, and E.
Vincent, Phys. Rev. Lett. 82, 438 (1999).

[19] S. Nakamae, C. Crauste-Thibierge, D. L’Hôte, E. Vincent,
E. Dubois, V. Dupuis, and R. Perzynski, Appl. Phys. Lett.
101, 242409 (2012).

[20] F. Belletti, M. Cotallo, A. Cruz, L. A. Fernandez, A.
Gordillo, A. Maiorano, F. Mantovani, E. Marinari, V.
Martín-Mayor, A. Muñoz Sudupe, D. Navarro, S. Perez-
Gaviro, J. J. Ruiz-Lorenzo, S. F. Schifano, D. Sciretti, A.
Tarancon, R. Tripiccione, and J. L. Velasco (Janus Collabo-
ration), Comput. Phys. Commun. 178, 208 (2008).

[21] M. Baity-Jesi et al. (Janus Collaboration), Comput. Phys.
Commun. 185, 550 (2014).

[22] S. Guchhait and R. Orbach, following Letter, Phys. Rev.
Lett. 118, 157203 (2017).

[23] E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz-
Lorenzo, and F. Zuliani, J. Stat. Phys. 98, 973 (2000).

[24] J. R. L. de Almeida and D. J. Thouless, J. Phys. A 11, 983
(1978).

[25] W. L. McMillan, J. Phys. C 17, 3179 (1984).
[26] A. J. Bray and M. A. Moore, in Heidelberg Colloquium on

Glassy Dynamics, Lecture Notes in Physics No. 275, edited
by J. L. van Hemmen and I. Morgenstern (Springer, Berlin,
1987).

[27] D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601
(1986).

[28] D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 373 (1988).
[29] H. Takayama and K. Hukushima, J. Phys. Soc. Jpn. 73,

2077 (2004).
[30] F. Lefloch, J. Hammann, M. Ocio, and E. Vincent, Euro-

phys. Lett. 18, 647 (1992).
[31] K. Jonason, E. Vincent, J. Hammann, J. P. Bouchaud, and

P. Nordblad, Phys. Rev. Lett. 81, 3243 (1998).
[32] K. Jonason, P. Nordblad, E. Vincent, J. Hammann, and

J.-P. Bouchaud, Eur. Phys. J. B 13, 99 (2000).
[33] J.-P. Bouchaud, V. Dupuis, J. Hammann, and E. Vincent,

Phys. Rev. B 65, 024439 (2001).
[34] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D.

El Masri, D. L’Hôte, F. Ladieu, and M. Pierno, Science 310,
1797 (2005).

[35] S. Albert, T. Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A.
Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet,
and F. Ladieu, Science 352, 1308 (2016).

[36] M. Baity-Jesi et al. (Janus Collaboration), Phys. Rev. B 88,
224416 (2013).

[37] At the critical temperature, we matched the value of
ðhmi=HÞjH=ðhmi=HÞjH→0, computed numerically [38],
with the same quantity measured experimentally in
Fe0.5Mn0.5TiO3 [39] (hmi is the equilibrium value of the
magnetization density).

[38] M. Baity-Jesi et al. (Janus Collaboration), J. Stat. Mech.
(2014), P05014.

[39] H. A. Katori and A. Ito, J. Phys. Soc. Jpn. 63, 3122
(1994).

[40] M. Baity-Jesi et al. (Janus Collaboration), Proc. Natl. Acad.
Sci. U.S.A. 114, 1838 (2017).

[41] C4ðr; twÞ ¼ ½qiðtwÞqiþrðtwÞ� where qiðtwÞ is the local over-
lap defined as qi ¼ σiτi, where σi and τi are two real replicas

PRL 118, 157202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

14 APRIL 2017

157202-5

https://doi.org/10.1063/1.1696442
https://doi.org/10.1088/0305-4470/26/15/001
https://doi.org/10.1103/PhysRevLett.76.843
https://doi.org/10.1103/PhysRevLett.76.843
https://doi.org/10.1103/PhysRevB.53.6418
https://doi.org/10.1088/0305-4470/33/12/305
https://doi.org/10.1103/PhysRevB.66.054404
https://doi.org/10.1103/PhysRevB.66.054404
https://doi.org/10.1103/PhysRevB.69.184423
https://doi.org/10.1103/PhysRevB.72.054417
https://doi.org/10.1103/PhysRevB.72.054417
https://doi.org/10.1088/1742-5468/2007/05/P05001
https://doi.org/10.1103/PhysRevLett.101.157201
https://doi.org/10.1103/PhysRevLett.101.157201
https://doi.org/10.1007/s10955-009-9727-z
https://doi.org/10.1007/s10955-009-9727-z
https://doi.org/10.1103/PhysRevE.92.022128
https://doi.org/10.1103/PhysRevB.91.174202
https://doi.org/10.1103/PhysRevB.91.174202
https://doi.org/10.1103/PhysRevE.93.032126
https://doi.org/10.1103/PhysRevE.93.032126
https://doi.org/10.1103/PhysRevB.91.174433
https://doi.org/10.1103/PhysRevB.91.174433
https://doi.org/10.1103/PhysRevLett.112.126401
https://doi.org/10.1103/PhysRevLett.112.126401
https://doi.org/10.1103/PhysRevB.91.014434
https://doi.org/10.1103/PhysRevLett.82.438
https://doi.org/10.1063/1.4769840
https://doi.org/10.1063/1.4769840
https://doi.org/10.1016/j.cpc.2007.09.006
https://doi.org/10.1016/j.cpc.2013.10.019
https://doi.org/10.1016/j.cpc.2013.10.019
https://doi.org/10.1103/PhysRevLett.118.157203
https://doi.org/10.1103/PhysRevLett.118.157203
https://doi.org/10.1023/A:1018607809852
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1088/0022-3719/17/18/010
https://doi.org/10.1103/PhysRevLett.56.1601
https://doi.org/10.1103/PhysRevLett.56.1601
https://doi.org/10.1103/PhysRevB.38.373
https://doi.org/10.1143/JPSJ.73.2077
https://doi.org/10.1143/JPSJ.73.2077
https://doi.org/10.1209/0295-5075/18/7/013
https://doi.org/10.1209/0295-5075/18/7/013
https://doi.org/10.1103/PhysRevLett.81.3243
https://doi.org/10.1007/s100510050014
https://doi.org/10.1103/PhysRevB.65.024439
https://doi.org/10.1126/science.1120714
https://doi.org/10.1126/science.1120714
https://doi.org/10.1126/science.aaf3182
https://doi.org/10.1103/PhysRevB.88.224416
https://doi.org/10.1103/PhysRevB.88.224416
https://doi.org/10.1088/1742-5468/2014/05/P05014
https://doi.org/10.1088/1742-5468/2014/05/P05014
https://doi.org/10.1143/JPSJ.63.3122
https://doi.org/10.1143/JPSJ.63.3122
https://doi.org/10.1073/pnas.1621242114
https://doi.org/10.1073/pnas.1621242114


that evolve with the same (random) couplings. ½ð� � �Þ�
denotes the average over initial spin configurations and
ð� � �Þ is the average over the random couplings.

[42] R. A. Baños et al. (Janus Collaboration), J. Stat. Mech.
(2010), P06026.

[43] G. Parisi, Statistical Field Theory (Addison-Wesley,
Reading, MA, 1988).

[44] D. J. Amit and V. Martín-Mayor, Field Theory, the Re-
normalization Group, and Critical Phenomena, 3rd ed.
(World Scientific, Singapore, 2005).

[45] Y. Ozeki and N. Ito, J. Phys. A 40, R149 (2007).
[46] J. A. Mydosh, Spin Glasses: An Experimental Introduction

(Taylor and Francis, London, 1993).
[47] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801

(1986).
[48] J. D. Stevenson, J. Schmalian, and P. G. Wolynes, Nat. Phys.

2, 268 (2006).
[49] Indeed, a satisfactory geometric construction would build

spin clusters with a number of spins scaling as the relevant
susceptibility, i.e., ½ξðtwÞ�D−θ in our case. For ferromagnetic
systems, these domains are the Fortuin-Kasteleyn (FK)
clusters [50]. Unfortunately, it is still unknown how to
satisfactorily generalize FK clusters to glassy systems (for
instance, the straightforward generalization of FK clusters to
spin glasses is space filling—–i.e., percolating—well above
Tc [51]). Yet, see Refs. [52–56] for some recent work.

[50] C. M. Fortuin and P.W. Kasteleyn, Physica (Utrecht) 57,
536 (1972).

[51] A. Coniglio, F. di Liberto, G. Monroy, and F. Peruggi, Phys.
Rev. B 44, 12605 (1991).

[52] J. Houdayer, Eur. Phys. J. B 22, 479 (2001).
[53] J. Houdayer and A. K. Hartmann, Phys. Rev. B 70, 014418

(2004).
[54] T. Jörg, Prog. Theor. Phys. Suppl. 157, 349 (2005).
[55] J. Machta, C. M. Newman, and D. L. Stein, J. Stat. Phys.

130, 113 (2008).
[56] Z. Zhu, A. J. Ochoa, and H. G. Katzgraber, Phys. Rev. Lett.

115, 077201 (2015).
[57] E. Vincent, J. Hammann, M. Ocio, J.-P. Bouchaud, and L. F.

Cugliandolo, in Complex Behavior of Glassy Systems,
Lecture Notes in Physics No. 492, edited by M. Rubí
and C. Pérez-Vicente (Springer, New York, 1997).

[58] F. Bert, V. Dupuis, E. Vincent, J. Hammann, and J.-P.
Bouchaud, Phys. Rev. Lett. 92, 167203 (2004).

[59] S. Karmakar, C. Dasgupta, and S. Sastry, Annu. Rev.
Condens. Matter Phys. 5, 255 (2014).

[60] G. B. J. P. Biroli, A. Cavagna, T. S. Grigera, and P.
Verrocchio, Nat. Phys. 4, 771 (2008).

[61] C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, and J.-P.
Bouchaud, Phys. Rev. Lett. 109, 175702 (2012).

[62] G. Biroli and P. Urbani, Nat. Phys. 12, 1130 (2016).

PRL 118, 157202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

14 APRIL 2017

157202-6

https://doi.org/10.1088/1742-5468/2010/06/P06026
https://doi.org/10.1088/1742-5468/2010/06/P06026
https://doi.org/10.1088/1751-8113/40/31/R01
https://doi.org/10.1103/RevModPhys.58.801
https://doi.org/10.1103/RevModPhys.58.801
https://doi.org/10.1038/nphys261
https://doi.org/10.1038/nphys261
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1103/PhysRevB.44.12605
https://doi.org/10.1103/PhysRevB.44.12605
https://doi.org/10.1007/PL00011151
https://doi.org/10.1103/PhysRevB.70.014418
https://doi.org/10.1103/PhysRevB.70.014418
https://doi.org/10.1143/PTPS.157.349
https://doi.org/10.1007/s10955-007-9446-2
https://doi.org/10.1007/s10955-007-9446-2
https://doi.org/10.1103/PhysRevLett.115.077201
https://doi.org/10.1103/PhysRevLett.115.077201
https://doi.org/10.1103/PhysRevLett.92.167203
https://doi.org/10.1146/annurev-conmatphys-031113-133848
https://doi.org/10.1146/annurev-conmatphys-031113-133848
https://doi.org/10.1038/nphys1050
https://doi.org/10.1103/PhysRevLett.109.175702
https://doi.org/10.1038/nphys3845

