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The superconducting properties of small metallic grains has been a topic of active research for half a
century now. Early experiments demonstrated a remarkable rise in the critical temperature, Tc, with
reducing grain size in a variety of materials. In two-dimensional diffusive superconductors, Tc is decreased
due to enhanced Coulomb repulsion. We propose that in finite-size grains the diffusive enhancement of
the Coulomb repulsion is weakened and leads ultimately to an increase in Tc in isolated, disordered
two-dimensional grains. Our mechanism is superimposed on the possible enhancement in Tc due to the
change in the density of states of finite-size systems.
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Introduction.—The superconducting properties of mate-
rials composed of small metallic grains has been a topic of
enduring interest for more than five decades now, begin-
ning with the pioneering theoretical work of Anderson in
1959 [1]. In the late 1960s, a series of experiments on thin
films of granular Al, Sn, In, etc. [2,3] found a remarkable
enhancement in their transition temperatures as the grain
size was reduced [4–6]. Later, improvements in electron
tunneling methods enabled measurements on single grains
[7] and showed that the enhanced Tc in these grains was
accompanied by an enhanced single particle gap compared
to the bulk value. Recent experiments [8] in dense grain
arrays seem to be consistent with these older observations.
While initial explanations of this increase included pro-

posals such as a surface enhancement of electron-phonon
interactions [2], later theories have tried to explain this in
terms of various finite-size effects [9], which become
important with reducing grain size, as the single particle
level spacing, δ, increases. In relatively clean systems, this
could lead to an enhancement in the DOS at the Fermi level,
resulting in an increasing Tc with reducing size, until the
grain becomes small enough such that δ ∼ Δ, whereΔ is the
superconducting gap. Below this minimum size, a coherent
superconducting state can no longer be formed in a single
grain, and the Tc disappears [1,10]. In dirty or irregularly
shaped grains, on the other hand, the interplay of disorder,
electron-electron repulsion, and finite-size effects brings
nontrivial physics into play, as we explain in detail below.
In a conventional superconductor, the attractive inter-

action responsible for superconductivity is mediated by
electron-phonon interactions. When an electron collides
with a heavy ion, it distorts the ion from its equilibrium
position. However, since the electron has an energy ∼EF,
the Fermi energy, it escapes from the vicinity of the
distortion in a time ∼ðℏ=EFÞ, while it takes a much longer
time ∼ðℏ=ωDÞ, where ωD is the Debye energy, for the ion

to relax. The distortion polarizes the metal, attracting other
electrons to it. Crucially, because of the difference in time
scales, a second electron attracted by the distortion expe-
riences only a small repulsion from the initial one, which
has escaped far away by that time, leading to an effective
attraction between the two electrons. This reduction in the
Coulomb repulsion between the two electrons can be
formally expressed using various methods, including a
renormalization group (RG) approach, leading to the well-
known Tolmachev-Anderson-Morel (TAM) logarithmic
reduction [11] in a clean system in the bulk.
In a diffusive system, the first electron escapes much

more slowly since it collides frequently with impurities,
and it may return to the original collision area. As a result,
the reduction in the Coulomb repulsion is weaker than the
clean case given by the TAM effect, causing a reduction in
Tc. In two dimensions, this effect can be formulated in the
RG language, leading to a modified RG equation below the
scattering rate (1=τ), as shown by Finkelstein [12,13].
In a finite-size system, the Thouless energy ETh ¼

ðℏD=L2Þ defines another important energy scale.At energies
much below ETh, superconducting systems with dimen-
sionless conductance g ¼ ðETh=δÞ ≫ 1 are described by
Richardson’s model [14], with constant, energy-independent
interaction matrix elements in the pairing channel.
Physically, this expresses the fact that, at energies much
below ETh, the wave functions of all electrons are spread
uniformly over the whole system, and thus the dynamical
component of the electron-electron interaction is no longer
present. In the RG language, this leads to the TAM logarithm
again, resulting in a stronger reduction of the Coulomb
interaction in this regime, similar to a clean system.
In a diffusive, finite-size grain, these energy scales form

a hierarchy, given by EF > 1=τ > ETh. Between EF and
1=τ, the physics is identical to that of a bulk clean system
since the electrons are unaware of the disorder and the finite
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size. Hence, the RG is determined by the TAM equation.
Between 1=τ and ETh, the electrons are affected by disorder
but not the finite size and thus follow the Finkelstein
equation. However, below ETh, the finite-size effect domi-
nates, and the RG reverts to the TAM equation due to the
arguments provided above.
As the grain size L is reduced, ETh is increased,

diminishing the regime where the Finkelstein effect is
relevant, while simultaneously extending the regime where
the TAM equation holds. As a result, in a smaller grain, the
Coulomb repulsion is reduced more strongly since the
Finkelstein regime is smaller, and this should lead to a
larger mean field Tc.
These conclusions are confirmed by our calculations. We

consider isolated grains with size L ≫ t, where t is the
thickness of the grains, and study the mean field Tc as a
function of ETh by solving the appropriate RG equations in
the different regimes. Using a specific model for the bare
interactions based on the physical arguments given above,
we show that the mean field Tc can be increased all the
way from the disordered bulk limit, Tb

c , to the clean limit,
Tc0, by simply reducing the size of the grain such that
Tb
c < Ec < 1=τ, where Ec ¼ 4π2ETh. We observe an

increase of up to 20% in Tc when g ∼Oð10Þ, but at the
limit of the validity of the theory, when g ∼Oð1Þ, Tc
increases by up to 60%.
RG in clean systems.—Superconductivity is driven by a

diverging interaction in the pairing channel or Cooper
channel. In a clean system, the physics is contained in the
repeated scattering of electrons with opposite momenta,
Matsubara frequencies, and spin, j~k; ϵm↑i and j − ~k;−ϵm↓i,
by the interaction [15]. The screened Coulomb interaction
Vscr is usually assumed to be local and instantaneous, and
hence the matrix elements for pair scattering between states

j~k; ϵm↑i and j − ~k;−ϵm↓i and j ~k0; ϵn↑i and j − ~k0;−ϵn↓i is
given by a constantΓ0

mn ¼ ν0Vscr ≈ 1, where ν0 is the density
of states at the Fermi energy.
The effective phonon-mediated attractive interaction

below ωD is retarded, and hence frequency dependent,
in general, but it is assumed to be a constant for simplicity.
Denoting its value by λa, the bare matrix elements in the
clean system are given by

Γ0
mn ¼ 1; EF > maxðϵm; ϵnÞ > ωD

¼ ð1 − λaÞ; ϵm; ϵn < ωD: ð1Þ

The full effective interaction Γmn can be found by
solving the relevant Bethe-Salpeter equation (see the
discussion on the disordered case below), or by progres-
sively integrating out thin regions of energy in succession.
With ϵm, ϵn → ω and Γmn ≡ ΓðωÞ, both methods lead to the
standard TAM RG equation [11], given by

dΓðωÞ=dlω ¼ −Γ2ðωÞ: ð2Þ

Here, ω is the running energy scale and lω ¼ lnðEF=ωÞ.
Notice that the bare matrix elements do not appear in the
equation directly, but only through the boundary condition
ΓðEFÞ ¼ Γ0ðEFÞ ≈ 1. This is easily integrated to give the
TAM logarithm reduction [11]

ΓðωÞ ¼ ΓðEFÞ=½1þ ΓðEFÞ lnðEF=ωÞ�: ð3Þ

Now the RG proceeds in two steps. First, from EF to ωD,
the RG reduces the effective interaction strongly, according
to Eq. (3). If the attractive interaction due to the phonons,
λa, is stronger than the renormalized repulsive interaction
ΓðωDÞ, then the total interaction is negative and further
renormalization increases until it diverges at ω ¼ Tc∼
ωD exp½−1=jΓðωDÞ − λaj�. In some places in the literature
[16], ΓðωDÞ is denoted by μ�.
Disordered.—In disordered systems, one should take

into account corrections to the Γmn due to disorder. At
weak potential disorder, 1=τ ≪ ωD, it is well known
that the superconducting Tc is virtually unchanged [1].
Diagrammatically, this corresponds to incorporating the
effects of disorder and interactions to Γmn separately [13],
i.e., where the electron-electron interactions and disorder
corrections are factorizable.
However, there is a class of corrections that couples

different sections of the matrix elements with different
indices m and n. These provide a nontrivial frequency
dependence to the resulting matrix elements, and the
disorder and interaction corrections are no longer factor-
izable. While these corrections are minor in three dimen-
sions, they become important in lower dimensions. In two
dimensions, the disorder corrected bare Coulomb matrix
elements Γmn can be explicitly calculated by diagrammatic
methods and are given by [13,17]

Γ0
mn ¼ 1þ ut ln½1=ðϵm þ ϵnÞτ�; ϵn; ϵm < 1=τ: ð4Þ

Here, ϵm and ϵn are fermionic Matsubara frequencies, u ∼
0.5 in two dimensions and t ¼ ð1=2π2Þðe2=ℏÞR□ ¼
1=ð2π2gÞ, where R□ is the sheet resistance in two dimen-
sions. The first term is the contribution from the clean bare
matrix element, while the frequency dependent second term
encodes the contribution from disorder corrections.
This form can also be derived by calculating the pairing

channel matrix elements between exact disorder eigenstates
jm↑i, jm↓i and jn↑i, jn↓i. Using semiclassical arguments
[18], one can show that

ν0Vmn ¼
X

q;Dq2<1=τ

jhmjeiqrjnij2

¼ ðδ=πÞ
X

q;Dq2<1=τ

Dq2=ðD2q4 þ ω2
mnÞ: ð5Þ

Here, ωmn is the energy difference between the states m
and n. In the continuum limit in two dimensions, the
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resultant integral yields the logarithm of Eq. (4). The full
matrix element Γmn is given by the following Bethe-
Salpeter equation [17]:

Γmn ¼ Γ0
mn − 2πT

X

r

Γ0
mr

1

εr
Γrn: ð6Þ

The logarithmic behavior of Γ0
mn enables a RG treatment

of the system using the maximum section approach [19]
with the approximation ln½ðϵm þ ϵnÞτ� ≈ lnðmax½ϵm; ϵn�τÞ.
One then gets a modified RG equation for ΓðωÞ given by
[13,17,20]

dΓðωÞ=dlω ¼ ut − Γ2ðωÞ: ð7Þ
The first term is the nontrivial contribution due to

disorder and slows down the renormalization of the
scattering amplitude. In a thermodynamic two-dimensional
system, this leads to a suppression of the Tc with increasing
disorder.
Finite size.—In finite-size systems, ETh provides another

important energy scale in addition toEF, 1=τ,ωD, and Tc, as
explained earlier. It is well known that the statistical proper-
ties of the energy eigenstates of such systems for energy
scales ω ≪ ETh and g ≫ 1 are described by random matrix
theory [22]. Under these conditions, the system is described
by the so-called universal Hamiltonian [23], which is
determined by three constant coefficients coupling to the
total density, spin, and pairing operators, respectively. In
situations where only the pairing channel is relevant, this
reduces to the well-known Richardson model [14]:

HRich ¼
X

m;σ

ϵmc
†
mσcmσ þ λδ

X

m;n

c†m↑c
†
m↓cn↓cn↑: ð8Þ

Here,m, n denote the exact eigenstates of the system and
λ encodes the strength of the electron-electron interactions.
Thus, the matrix elements become independent of the states
they couple, similar to the clean case, and this leads to the
TAM RG equations. To come up with a specific model for
the bare matrix elements, we make the crude assumption
that we can neglect the frequency dependence of the
elements below ω < Dq2min ¼ Ec in Eq. (5). Hence, for
ω < Ec, the bare Coulomb matrix elements assume the
constant value λ ∼ 1þ ut ln½1=ðEcτÞ�. Ec acts as an effec-
tive cutoff scale for the bare matrix elements and plays a
fundamental role in the scaling properties of the system.
Hence, in superconducting grains with a relatively large

ETh and L ≫ t, there are three distinct regimes:
(1) EF > ω > 1=τ. The system is in the ballistic

limit, the bare Coulomb matrix elements are given by
Γ0
mn ¼ λ0 ¼ 1, and the full matrix element Γ follows the

TAM RG equation, Eq. (4).
(2) 1=τ > ω > Ec. In this regime, the Coulomb repul-

sion is affected by disorder, Γ0
mn is given by Eq. (4), and the

RG is given by the Finkelstein equation, Eq. (6).

(3) Ec > ω > Tc. In this regime, the matrix elements
are effectively constant and the system can be described by
the Richardson model. Using our crude model described
earlier, Γ0

mn ∼ 1þ ut ln½1=ðEcτÞ�, and the system again
follows the TAM RG equation.
Of course, for all cases where ðϵm; ϵnÞ < ωD, the total

bare matrix element also includes the attractive interac-
tion, (−λa).
These considerations lead to a remarkable conclusion: In

the regime 1=τ > Ec > Tc, increasing Ec by reducing the
size of the system diminishes regime 2 and simultaneously
extends regime 3, resulting in a faster renormalization of
the effective interaction. This will lead to an increase in the
mean field Tc of the system, until Ec ¼ 1=τ, where Tc will
be equal to the clean limit value of the material, since the
RG would then be determined by the TAM equations
throughout the whole energy range. Thus, within mean
field theory, one can increase Tc all the way from the bulk
disordered value, Tb

c [given by the solution of Eq. (7)], to
the clean value T0

c. As mentioned before, this picture ceases
to be valid when δ ∼ Δ ∼OðTcÞ, where the superconduct-
ing state ceases to exist.
Numerical results.—We consider isolated grains of mate-

rials with transverse dimensions L and thickness t ≪ L, so
that they are effectively two dimensional. For direct com-
parison with real materials, we choose our energy unit such
that important parameters like EF assume values similar to
those in real materials expressed in kelvins (K). We choose
reasonable values: EF¼30000K, 1=τ ¼ 3000 K ¼ 0.1EF,
and ωD ¼ 300 K ¼ 0.01EF. Using typical values for
density of states ν0 and Fermi velocity vF for free electrons,
we find a mean free path le ≈ 2.5 nm. Note that, for a
system with t ¼ le, g ¼ ðETh=δÞ ¼ ℏDν0t ≈ 9. The maxi-
mum value of Ec ¼ ð1=τÞ implies that the corresponding
minimum length L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2ℏDτ

p
≈ 9.1 nm.

First, we analyze the behavior of the bare matrix
elements to gain insight into the RG process. Figure 1
shows the bare Coulomb matrix elements, as is explained in
the figure caption in detail. The plots demonstrate how
these elements, which increase logarithmically for ω > Ec,
essentially saturate below this value, validating our crude
assumptions in the previous section. We have omitted the
attractive interaction below ωD in the plots for clarity.
Figure 2 shows our primary result: the normalized

transition temperature Tc with an increasing Ec for two
cases, with Tc0 ¼ 7 K and 1 K, respectively, crudely
corresponding to materials with a moderately large Tc
such as Mo-Ge [24] and small Tc such Al. We choose the
same set of parameters for both except for the attractive
interaction parameter λa, which is adjusted to yield the
respective values of Tc. We find that at large g (∼10), the
system with the larger Tc shows an increase of 12%, while
the one with the smaller Tc shows a much larger increase of
20%. Hence, grains with a small Tc show a much larger
fractional increase with reducing size at large g, which is a
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correlation borne out by experiments. Furthermore, by
pushing the theory close to its limit of validity g ∼Oð1Þ,
we get an enhancement close to 60% in both cases. We
reiterate that this remarkable conclusion follows simply
from examining the RG flow of the system with various

values of Ec, with no reference whatsoever to specific
details of the material parameters and its geometry.
Experimental verification and discussion.—Our theory

concerns isolated grains, studied in some experiments [25],
whereas other experimental samples consist of an array of
such grains coupled by an effective Josephson coupling.
This provides a new energy scale in these systems whose
collective properties, including transport, may be very
different from those of individual grains. Hence, to verify
our predictions experimentally, one must focus on isolated
or weakly coupled grains, and measurements sensitive to
the single particle indicators of the superconducting state of
individual grains, such as the local gap. Examples of the
above are the specific heat capacity, which shows a peak at
the superconducting transition, and scanning tunneling
measurements, which can measure the local density of
states, and thus the local gap, directly. Hence, we propose
that our predictions should be verifiable from measure-
ments of specific heat capacity and tunneling spectra to
track the transition in individual grains.
As discussed earlier, we have neglected various other

finite-size effects discussed in the literature that may lead to
an enhancement of the Tc in relatively clean grains. Since
our mechanism is completely different from these, our
effect will be superposed on all these in real disordered
grains. This seems to be relevant in granular Al films, for
example, where the Tc can substantially exceed Tc0 [8], but
here our mechanism may contribute a part of the total
increase. Furthermore, we have neglected the progressive
broadening of the superconducting transition with an
increasing δ=Tc (leading to its eventual disappearance in
the δ=Tc → 1 limit [1,10]), analyzed in detail in Ref. [26].
These results seem to indicate that the broadening is not
accompanied by an appreciable shift in the transition in
small grains. We have also not discussed the effects of
fluctuations in the grain sizes in experiments on distribu-
tions of grains [27].
In conclusion, by considering the RG equations in

different energy regimes, we have demonstrated a universal
mechanism for increasing the superconducting Tc in
isolated disordered grains with reducing size, from the
bulk value Tb

c to the clean limit Tc0 in the regime
Tc < Ec < 1=τ. This prediction can be tested experimen-
tally by measuring properties sensitive to the local single
particle gap such as the specific heat capacity.
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