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The envelope instability near the 90° phase advance in periodically focused space charge dominated
beams is a well-known phenomenon in linear transport sections or linacs. The corresponding stop band is
usually avoided because of the resulting strong mismatch oscillations and beam loss. We show that in
circular accelerators or transport sections including bending magnets the instability is modified due to the
effect of dispersion. Using the two-dimensional envelope equations extended by the dispersion equation
we identify an additional stop band above 120°. For periodic focusing the stop band results from the
confluence of an envelope mode with the newly identified coherent dispersion mode. Results from
perturbation theory are compared with the full envelope model and particle-in-cell simulation, which all
show good agreement. The newly identified mode has several implications and applications for the
characterization of intense beams in circular machines.
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A detailed understanding of the physics of high-intensity
proton or ion beams in linear and circular accelerators is of
fundamental importance for many research areas, which
rely on such beams, such as spallation neutrons sources or
radioactive beam factories. In this context, studies of beam
intensity limitation by space charge effects and measures to
increase such space charge limits are of essential impor-
tance. Because of recent observations in high-intensity
linear accelerators [1,2] the well-known 90° envelope
instability [3] or second order parametric resonance [4]
has received renewed interest, as it represents a major
intensity limitation not only in linacs, but also in circular
machines. In the past few years fruitful work has been
initiated on this subject, for example, in Refs. [5–15]. The
situation in circular accelerators for high-intensity beams is
further complicated due to the presence of dispersion.
Recent projects [16,17] require circular accelerators to
accumulate high beam intensity; hence, the study of
dispersion induced effects has received more attention.
Progress has been made in understanding the combined
effect of space charge and dispersion on beam dynamics.
For matched two-dimensional beams Venturini and Reiser
(V-R) [18,19] developed an envelope model with a gen-
eralized invariant emittance in the presence of both
dispersion and space charge. Another approach by Lee
and Okamoto (L-O) [20] resulted in a space charge
modified equation for the dispersion. Both approaches
indicate that in the presence of linear space charge forces
and dispersion, a matched particle distribution exists. Other
studies related to dispersion are performed within the
smooth approximation approach [21] and the modified
particle-core model [22–24]. In the later study, Ikegami
introduced stable dispersion modes, which provide some
insight into the role of dispersion for coherent beam

oscillations. Note that previous studies assumed stable
beams and did not consider the role of dispersion on the
stability of high intensity beams. So far the theoretical
framework of (transverse) beam envelope instabilities has
been developed mainly for linear accelerators.
In this Letter, we report a new phenomenon in intense

beams in circular accelerators, namely, the dispersion-
induced beam instability, which is characterized by a
resonance between the second order even mode (envelope
mode) and a coherent dispersion mode described here.
In the following we assume x and y are the transverse

degrees in the horizontal and vertical direction, respec-
tively, s the longitudinal coordinate, and k0;x;y, kx;y are the
phase advance per focusing cell without and with space
charge, respectively. Consider a coasting beam in a periodic
focusing structure with bending magnets. The Hamiltonian
of the system is

H ¼ 1

2
ðp2

x þ p2
yÞ þ

κx0ðsÞ
2

x2 þ κy0ðsÞ
2

y2

þm2c4

E2
0

δ2 −
x

ρðsÞ δþ Vscðx; y; sÞ; ð1Þ

where κx0ðsÞ, κy0ðsÞ are the focusing gradients, ρðsÞ the
radius of curvature, and δ ¼ ðp − p0Þ=p0 the fractional
momentum deviation from the design momentum p0 with
E0 being the corresponding energy and Vsc the space
charge potential. With canonical transformation introduced
in the V-R and L-O frameworks: x ¼ x̄þ δDx,
px ¼ p̄x þ δDx

0, y ¼ ȳ, py ¼ p̄y, we introduce x̄ and p̄x

as the betatron coordinates affected by space charge, and
Dxδ, D0

xδ the off-momentum coordinate affected by space
charge. The coefficients Dx and D0

x will eventually be
identified with the space-charge-modified dispersion and
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its derivative. Following Sacherer’s approach [25] we
obtain,

�
x
∂Vsc

∂x
�

¼ Ksc

2XðX þ YÞ ðσ
2
x þ σ2δD

2
xÞ; ð2Þ

in which h·i denotes the averaging over phase space
variables; σx¼

ffiffiffiffiffiffiffiffi
hx̄2i

p
, σy¼Y¼

ffiffiffiffiffiffiffiffi
hy2i

p
¼

ffiffiffiffiffiffiffiffi
hȳ2i

p
, σδ ¼ hδ2i,

X ¼
ffiffiffiffiffiffiffiffi
hx2i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x þ σ2δD

2
x

p
, and Ksc the space charge

perveance parameter, defined by Ksc ¼ 2NLrc=ðβ2γ3Þ,
with NL the number of particles per length, rc the classical
proton radius, β and γ the relativistic factors. Equation (2)
shows that beam motion can be expressed as a linear
superposition of the betatron oscillations and dispersion,
independent of the form of particle distribution.
The space-charge-modified dispersion function can be

defined from Eq. (1) and Eq. (2):

d2Dx

ds2
þ
�
κx0ðsÞ −

Ksc

2XðX þ YÞ
�
Dx ¼

1

ρðsÞ ; ð3Þ

with the corresponding rms envelope equations

d2σx
ds2

þ
�
κx0ðsÞ −

Ksc

2XðX þ YÞ
�
σx −

ε2x
σ3x

¼ 0;

d2σy
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�
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ε2y
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where εx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx̄2ihp̄2

xi − hx̄p̄xi2
p

(similar in εy) is the
generalized rms emittance. Since the beam envelope
XðsÞ contains two independent contributions: σδDxðsÞ
and σxðsÞ, it is convenient to introduce a “dispersion ratio”
cos θ, and the corresponding “betatron ratio” sin θ to
estimate the extent of the beam motion being affected
by dispersion, defined by cos θ ¼ σδDxðsÞ=XðsÞ and
sin θ ¼ σxðsÞ=XðsÞ (0 < θ < π=2), respectively. Clearly,
a larger dispersion ratio means a larger dispersion effect.
For periodic κx0ðsÞ, κy0ðsÞ, and ρðsÞ, matched solutions

fσx0; σy0; Dx0g can be obtained from Eq. (3) and Eqs. (4).
Let us assume a slightly mismatched envelope with
fσx;σy;Dxg and small perturbations fξ;η;dxg∶σx¼σx0þξ,
σy ¼ σy0 þ η and Dx ¼ Dx0 þ dx. After neglecting the
higher order terms and introducing the horizontal beam
width X ¼ X0 þ ξσx0=X0 þ σ2δDx0dx=X0, we can obtain
from Eq. (3) and Eqs. (4) the envelope oscillation system,
which can be written in a matrix form:

d2

ds2

0
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dx

1
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0
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and

a0 ¼ 4κx −
2rþ 1

rþ 1
Δκxsin2θ0; a1 ¼

r
rþ 1

Δκx sin θ0;

a2 ¼
2rþ 1

rþ 1
σδΔκx sin θ0 cos θ0; a3 ¼ 4κy þ

rþ 2

rþ 1
Δκy;

a4 ¼
r

rþ 1
σδΔκx cos θ0; a5 ¼ κx þ

2rþ 1

rþ 1
Δκxcos2θ0:

Here we use the following notation: beam size ratio
r ¼ X0=Y0; dispersion ratio for matched case: cos θ0 ¼
σδ0=X0, betatron ratio for matched case: sin θ0 ¼ σx0=X0;
space charge modified focusing gradients κx ¼ κx0 − Δκx
and κy ¼ κy0 − Δκy, where Δκx ¼ Ksc=½2X0ðX0 þ Y0Þ�
and Δκy ¼ Ksc=½2Y0ðX0 þ Y0Þ� are the space charge
induced shifts. Equations (5), recognized as a set of second
order differential equations behaving like three coupled
harmonic oscillators, can be decoupled to three fundamen-
tal modes with oscillation frequencies fωig and the
corresponding phase shift fϕi ¼ 2πωig ði ¼ 1; 2; 3Þ. For
periodic focusing algebraic expressions for the fundamen-
tal modes require numerical methods since κx0, κy0, κx and
κy are functions of s.
For constant focusing with κx0ðsÞ ¼ κy0ðsÞ ¼ κ0,

ρðsÞ ¼ ρ0, and k0;x ¼ k0;y ¼ k0, solutions can be found
which can provide useful physical insight: in the limit of
zero beam current Eqs. (5) are decoupled and the phase
shifts of three fundamental modes are

ϕ1 ¼ ϕ2 ¼ 2k0; ϕ3 ¼ k0: ð6Þ

On the other hand, for strong space charge, approaching the
space charge limit, we have,

ϕ1 ¼ k0; ϕ2 ¼
ffiffiffi
2

p
k0; ϕ3 ¼ 0: ð7Þ

In both limits, ϕ1 and ϕ2 have the identical form as in the
case without dispersion: quadrupole (slow) mode, breath-
ing (fast) mode; the additional mode, which is related to
dispersion, behaves differently and its phase shift ϕ3 tends
to be zero in the space charge limit.
A generalized stability analysis can be performed by

integrating Eqs. (5) over one focusing cell (from m to
mþ 1)

ζmþ1 ¼ Mζm; ð8Þ

where M is the map for the perturbation vector ζ¼
ðξ;ξ0;η;η0;dx;dx0Þ over one cell. As fσx; σ0x; σy; σ0y; Dx;D0

xg
in Eq. (3) and Eqs. (4) follow a Hamiltonian, the six
eigenvalues ofM: λi ¼ jλijeiϕiði ¼ 1; 2;…; 6Þ exist only as
reciprocal or as conjugate in three pairs: fλ1; λ�1g, fλ2; λ�2g,
fλ3; λ�3g. Moreover, taking each oscillation mode in space
charge limits as reference, we can select a suitable set of
phase shifts fϕ1;ϕ2;ϕ3g with corresponding moduli
fjλ1j; jλ2j; jλ3jg representing quadrupole mode, breathing

PRL 118, 154801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

14 APRIL 2017

154801-2



mode and the mode from dispersion oscillation, respec-
tively, to fully characterize the beam oscillation system
without loss of generality. One of three moduli larger than
unity can be used as instability growth factor.
Let us analyze the beam stability using the example of a

FODO cell with dipoles [26] formed by the sequence:
f1
2
QFBQDB 1

2
QFg, in which QF and QD denote focusing

and defocusing quadrupoles, respectively, and B represents
dipoles acting along x. For simplicity, we chose k0;x ¼
k0;y ¼ k0. To make the example more representative, lattice,
dispersion functions, and rms momentum spread are chosen
such that the dispersion effect is close to existing circular
accelerators: in our FODO example, the maximum of the
dispersion ratio for zero current is cos θ̂0 ¼ 0.4, while in
existing circular accelerators 0.35 < cos θ̂0 < 0.6 for typical
reference parameters.Consider a continuous beamwith finite
rms momentum spread and identical emittances in x and y.
The numerical integration of Eq. (8) is performed and the
results for fϕ1;ϕ2;ϕ3g together with the growth factor
versus beam current are obtained and shown for two
representative cases: k0 ¼ 120° and 130°, as shown in
Figs. 1 and 2. For a more illustrative analysis of the
dispersion-induced instability, we introduce another notation
to represent the phase shift of dispersion oscillation mode,
namely, the coherent dispersion mode: ϕd ¼ 360° − ϕ3. As
can be seen in Fig. 1, ϕ1, ϕ2 decrease from 2k0 and ϕ3

decreases from k0, whileϕd increases from 360° − k0, which
is in agreement with the conclusion of Eq. (6). Note that the
well-known 90° envelope instability, i.e., parametric reso-
nance and confluent resonance occurs from kx ¼ 92°.
No confluence exists between ϕd and ϕ1 or ϕ2.
The appearance of the dispersion-induced instability is

shown in Fig. 2 for k0 ¼ 130°. The growth factor region
(stop band) from kx ¼ 118° to 110° indicates instability (the
simulation results for the emittance growth and phase space
evaluation shown in Fig. 2 will be discussed later). Since in
the region of kx ¼ 118° to 110°, confluence occurs between
the dispersion mode ϕd and the slow mode ϕ1, this
instability is induced by periodic focusing and dispersion
and can be related to a resonance between these two modes.

Besides, parametric and confluent resonances exist below
kx ¼ 94°. A criterion for the occurrence of dispersion-
induced instability can be given based on the following
analyses: in Fig. 2, ϕ0

1 ¼ 260°, ϕ0
d ¼ 240°, and ϕ0

d < ϕ0
1

(here the superscript “0” denotes values in the absence of
space charge). This is different from the case in Fig. 1, in
which ϕ0

1 ¼ ϕ0
2 ¼ ϕ0

d ¼ 240° and no confluence occurs
between ϕ1 and ϕd. These analyses show that only if
ϕ0
1 > ϕ0

d, e.g., 2k0 > 360° − k0, or k0 > 120°, ϕ1 and ϕd

can be confluent, and, hence, the dispersion-induced
instability occurs. In other words, for a lattice of k0;x ¼
k0;y ¼ k0, only with k0 > 120° satisfied, the dispersion-
induced instability may occur within a certain beam current
range. For a more physical interpretation, the extended
envelope oscillation system including dispersion contains
three fundamental modes. The mode of dispersion oscil-
lation (ϕd or ϕ3) behaves, to some extent, like a single
particle as Eq. (3) lacks the emittance term, which is
different from the two other modes ϕ1 and ϕ2. For a lattice
of k0;x ¼ k0;y ¼ k0 only with k0 > 120°, ϕd mode may
resonate with ϕ1 mode in a certain beam current range, and
induce the beam instability with the periodic focusing.

FIG. 1. k0 ¼ 120° case: Phase shifts ϕ1, ϕ2 (solid line) and ϕ3,
ϕd (dashed line) versus depressed phase advance kx with
dispersion.

(a)

(b)

FIG. 2. k0 ¼ 130° case: (a) Phase shifts ϕ1, ϕ2 (solid line) and
ϕd (dashed line) versus depressed phase advance kx with
dispersion and (b) growth factor jλj (solid line) from numerical
calculation and normalized emittance growth ϵx=ϵx0 (dotted line)
from PIC simulation versus depressed phase advance kx with and
without dispersion. (Shaded area denotes the stop band of the
dispersion-induced instability.) Insets: x − x0 phase space distri-
bution at 0 and 500 periodic cell.
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The criteria above can be extended to a more general
case. Let us consider a periodic lattice with k0;x > k0;y.
With increasing beam current the slow mode ϕ1 and the fast
mode ϕ2 decrease from 2k0;y and 2k0;x respectively, while
ϕd increases from 360° − k0;x. Therefore, ϕ2 can be
confluent with ϕd when satisfying 2k0;x > 360° − k0;x, e.g.,

k0;x > 120°: ð9Þ

Therefore, the dispersion-induced envelope instability can
be named “120° dispersion instability,” in contrast to the
usual envelope instability related to k0;x;y > 90°.
Some main features of the 120° dispersion instability are

discussed as follows. Since ϕd ¼ 360° − ϕ3, the condition
ϕ1;2 ¼ ϕd is actually ϕ1;2 þ ϕ3 ¼ 360°. Therefore, the
dispersion-induced instability can be identified as a “sum
parametric resonance” [15] between the envelope mode ϕ1

or ϕ2 and the dispersion mode ϕ3. An interesting question
may be raised as to whether the dispersion mode ϕd (or ϕ3)
can resonate with the lattice by itself, just like the well-
known parametric resonance characterized by ϕ1 mode or
ϕ2 mode locked to the 180° line. The main point is that
typically for a basic focusing cell k0;x;y is smaller than 180°,
which means ϕd is always larger than 180° or ϕ3 is always
smaller than 180°. Consequently, ϕd (or ϕ3) will not reach
the 180° line and resonate with the lattice.
For an overview of the appearance of dispersion-induced

instability, a kind of envelope resonance diagram is
calculated by solving the full envelope model of Eq. (3)
and Eqs. (4), numerically. This is shown in Fig. 3 as a color-
coded plot displaying the maximum envelope mismatch
factors achieved over 200 cells versus k0;x and k0;y as
variables. The mismatch factor measures the deviation of
the envelopes from their initially matched values following
Ref. [27]. Both the beam current and rms momentum
spread are held at a fixed value (in our example,

kx − k0;x ≈ −15°, σδ ¼ 0.2%). The vertical and horizontal
bands around k0;x ¼ 100° and k0;y ¼ 100° represent the
conventional 90° envelope instabilities; the thin diagonal
with negative slope denotes the sum envelope instability
[15]. In comparison, an additional vertical band appears
around k0;x ¼ 130°. This band represent the 120°
dispersion-induced instability.
PIC simulations have been performed using PyORBIT

[28] to support the above results and conclusions from
both, the envelope oscillation theory in Fig. 2 and the full
envelope model in Fig. 3. The initial particle distribution is
chosen as a transverse waterbag, which is rms matched
using the stationary solutions obtained from the envelope
model. In the simulation, the horizontal emittance growth
(normalized to initial one) ϵx=ϵx0 is taken after 500
focusing periods, at which time both the beam size and
emittance growth caused by envelope instability have
already saturated. As shown in Fig. 2(b) by the dotted
line curve, an emittance growth is only observed with
nonzero beam momentum spread in the range of kx ¼ 118°
to 110° and in agreement with the corresponding region of
the growth factor jλj from the envelope oscillation theory.
This is a clear validation of the dispersion-induced insta-
bility, since neither the usual 90° envelope instability nor
the fourth order structure resonance [6,13,29] exist within
this region. The corresponding simulation results for the
particle distribution are shown in the insets: with the initial
distribution at kx ¼ 115°, notable emittance growth can be
observed after 500 periodic cells. It is worth pointing out
that the profile of emittance growth in Fig. 2(b) is
“sawtooth,” with one sharper side of emittance growth
rate at kx ¼ 110°, which differs significantly from the
“rounded” profile for the growth factor. We interpret this
similar to the case of the 90° instability [6,13]. Within the
stop band of the 120° dispersion instability the beam tends
to reach a stable state by self-detuning due to the accom-
panying emittance growth, until it leaves the stop band.
Since the detuning process occurs always in the direction of
weaker space charge, the beam has to go through the whole
range of the stop band with larger emittance growth, if
crossing from the side of kx ¼ 110°. In comparison, the
growth factor, which is numerically obtained by integration
of Eq. (8) [solid line curve in Fig. 2(b)], lacks the
information on the beam self-detuning process, since the
envelope approach describes only the onset, rather than
the saturation of the instability. A further examination
shows that the emittance growth, the eigenvalues in Fig. 2,
and the mismatch factor in Fig. 3, which all characterize the
dispersion instability, are in agreement in the range of the
120° dispersion instability, in terms of the beam current.
For example, the points kx;0 ¼ 130°, ky;0 ¼ 130° in Fig. 3
are in accordance with the point kx ¼ 115° in Fig. 2, both of
which are located in the stop band.
In summary, we have shown that in the presence of

dispersion and space charge a coherent dispersion mode
FIG. 3. Scan of the mismatch factor (color coding) from the full
envelope equations with dispersion after 200 cells.
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exists, besides the well-known slow and fast envelope
modes. This dispersion mode has been identified within a
generalized envelope oscillation model and full numerical
solutions of a set of envelope equations, including
dispersion, as well as in PIC simulations. For phase
advances larger than 120° and lattice parameters similar
to modern high-intensity synchrotrons, we find that the
dispersion mode is unstable. Our analysis reveals that this
dispersion-induced instability in periodic focusing lattices
is characterized by the confluence of the fast mode or slow
envelope mode (i.e., the second-order even mode) with the
dispersion mode.
We expect that the coherent dispersion mode and its

instability will have implications for the choice of the
working point in high intensity circular accelerators. An
important application would be the experimental identi-
fication of the space charge modified dispersion mode
from the transverse beam spectra: The observation of the
dispersion mode could be a method to dynamically
characterize the space-charge-modified dispersion.
Measurements in circular accelerators could take advantage
of quadrupolar pickup signals to identify the envelope
modes [30,31] and the new coherent dispersion mode,
which would give a full dynamical characterization of the
relevant optical functions modified by space charge.
Furthermore, the identified 120° stop band could be
avoided during bunch compression [32–34] in synchro-
trons and might play a role in ERLs and recirculators.
Our results could trigger further studies of confluence

with other modes [4,35,36]. Furthermore, the role of
synchrotron motion on this new instability in bunched
beams deserves additional study.
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