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We find a four-dimensional N ¼ 1 gauge theory which flows to the minimal interacting N ¼ 2

superconformal field theory, the Argyres-Douglas theory, in the infrared up to the extra free chiral
multiplets. The gauge theory is obtained from a certainN ¼ 1 preserving deformation of theN ¼ 2 SUð2Þ
gauge theory with four fundamental hypermultiplets. From this description, we compute the full
superconformal index and find agreements with the known results in special limits.
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Introduction.—Conformal field theory describes physics
at a fixed point of a (quantum) gauge theory and therefore is
one of the most important subjects in theoretical physics. It
is well known, for example, that QCD with a particular
amount of quarks flows to the infrared (IR) conformal fixed
point. In four dimensions, however, it is difficult to probe
conformal field theories in the analytic level because they
are generically strongly coupled.
Symmetry is one of the most important properties for

characterizing these theories. Apart from the theories with a
spontaneously broken symmetry, it is often the case that the
symmetry of the IR conformal field theory is inherent in the
ultraviolet (UV) theory. However, sometimes the symmetry
of the IR theory is emergent and not visible from the UV.
This is either due to a lack of proper formulation or to large
quantum effects.
In this Letter, we present a theory realizing this phe-

nomenon in a novel way: anN ¼ 1 supersymmetric gauge
theory that flows to the infrared fixed point governed
by N ¼ 2 minimal superconformal field theory (SCFT),
namely, the Argyres-Douglas (AD) theory [1]. Therefore,
the infrared supersymmetry is enhanced from N ¼ 1 to
N ¼ 2 in this model.
Supersymmetry makes the theory rather tractable thanks

to the techniques developed in recent decades, e.g., con-
straints from holomorphy [2], localization [3,4], and so on.
In particular, the superconformal index of a SCFT [5,6], or
the partition function on S1 × S3, can be obtained from the
localization technique. This quantity encodes the spectrum
of the supersymmetry-protected sector. When the SCFT is
obtained as an IR fixed point of a Lagrangian theory, one
can easily compute the index from the matter content in
the UV.

The Argyres-Douglas theory obtained as the IR fixed
point of our N ¼ 1 setup was originally found by con-
sidering the special locus in the Coulomb branch ofN ¼ 2
supersymmetric gauge theory, where Bogomol’nyi-Prasad-
Sommerfield states with mutually nonlocal electromagnetic
charges become massless. Generalizations can be found in
[7,8], again as special loci in the Coulomb branches. This
construction makes it impossible to write a Lagrangian for
this theory. Since the theory’s discovery, not much has been
known about it in the conformal phase, because of its lack
of weakly coupled description.
Nevertheless, there are indications that the AD theory is

the simplest or minimalN ¼ 2 SCFT. As was shown in [9],
any N ¼ 2 SCFTs have a protected sector described by
the two-dimensional chiral algebra. For the AD theory and
its generalizations, the corresponding chiral algebras are
nonunitary minimal models [10] or given by a simple coset
[11]. In particular, the Argyres-Douglas theory that we find
as the IR fixed point has the chiral algebra given by the
simplest minimal model, namely, the Yang-Lee model.
Moreover, the central charge c takes the minimal value [12]
among the interacting unitary four-dimensional N ¼ 2
SCFTs.
Our N ¼ 1 gauge theory description provides a new

handle for studying aspects of this strongly interacting
theory that has, in the past, been mysterious. The key
ingredient in the analysis is the a-maximization [13] and its
modification [14]. This allows us to analyze the end point
of the renormalization group (RG) flow, indicating that
the IR theory is the minimal N ¼ 2 SCFT. Furthermore,
the gauge theory description enables us to compute various
supersymmetric partition functions, in particular, the super-
conformal index. The superconformal indices of the AD
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theory and its generalizations have been studied in [10,
15–18], but only in some particular limits. Here, we
compute the superconformal index in full generality. We
find that the index computed in this way reproduces the
previous results found in [10,17] by taking the fugacity
parameters to special values.
The gauge theory.—Let us describe the gauge theory we

study in this Letter. First, consider N ¼ 2 supersymmetric
SUð2Þ gauge theory with Nf ¼ 4 fundamental hypermul-
tiplets. This theory preserves the SOð8Þ global symmetry
and has a moment map operator μ, which is the lowest
component of the conserved current multiplet. We then add
a chiral multiplet M transforming in the adjoint represen-
tation of SOð8Þ and add the superpotential W ¼ TrMμ.
Then we give a nilpotent vacuum expectation value (VEV)
to M given by ρðσþÞ, where ρ is the embedding ρ:
suð2Þ → soð8Þ. This is the type of deformation considered
in [19–22]. Depending on the choice of the embedding ρ, a
different amount of SOð8Þ flavor symmetry is broken.
Here, we pick the principal embedding, which leaves no
flavor symmetry. This will give masses to the fundamental
quarks and leave some components ofM; see [23] for more
details.
After integrating out massive components, we obtain

the following gauge theory: there are two chiral multiplets
transforming in the fundamental representation, one in the
adjoint and four singlets coming from M. The charge
assignment is as follows:

SUð2Þ ðJþ; J−Þ ðR0;F Þ
q □ ð1; 0Þ ð1

2
; 1
2
Þ

q0 □ ð1;−6Þ ð− 5
2
; 7
2
Þ

ϕ adj ð0; 2Þ ð1;−1Þ
M1 1 ð0; 4Þ ð2;−2Þ
M3 1 ð0; 8Þ ð4;−4Þ
M5 1 ð0; 12Þ ð6;−6Þ
M0

3 1 ð0; 8Þ ð4;−4Þ

: ð1Þ

These are compatible with the superpotential

W ¼ ϕqqþM1ϕ
2qq0 þM3qq0

þM5ϕq0q0 þM3
0ϕ3q0q0; ð2Þ

where we omitted the gauge indices. The Uð1ÞJ� are the
nonanomalous R symmetries coming from the Cartan parts
of the N ¼ 2 Uð2ÞR. Therefore the superpotential should
have charge ðJþ; J−Þ ¼ ð2; 2Þ. We also write the global
symmetries as Uð1ÞR0

×Uð1ÞF for future convenience,
given by R0 ¼ 1

2
ðJþ þ J−Þ and F ¼ 1

2
ðJþ − J−Þ. If this

theory flows to a SCFT in the IR, the superconformal R
symmetry will be given by a linear combination of the two
Uð1Þs. Let us write

RIR ¼ 1þ ϵ

2
Jþ þ 1 − ϵ

2
J− ¼ R0 þ ϵF ; ð3Þ

where the correct value of ϵ at the superconformal point
is determined via a-maximization [13], as we will see
shortly.
RG flow and a-maximization.—The central charge a is

given in terms of the ’t Hooft anomaly coefficients of the IR
superconformal R symmetry as

a ¼ 3

32
ð3TrR3 − TrRÞ; ð4Þ

c ¼ 1

32
ð9TrR3 − 5TrRÞ: ð5Þ

By substituting the expression (3), the trial central charge
aðϵÞ can be represented by the anomalies of Jþ and J−. For
our theory, they are given by

Jþ; J3þ J− J3− J2þJ− JþJ2−
−4 18 1362 34 −228

; ð6Þ

from which we get aðϵÞ ¼ − 3
32
ð807ϵ3 − 1746ϵ2 þ

1231ϵ − 284Þ. Upon a-maximization, we get ϵ ¼
1
807

ð582þ ffiffiffiffiffiffiffiffiffiffi
7585

p Þ≃ 0.82911. This makes the Coulomb
branch operator Trϕ2 [which has ðJþ; J−Þ ¼ ð0; 4Þ] and
M1 violate the unitarity bound so that they become free
along the RG flow and get decoupled.
Let us redo the a-maximization after removing these

chiral multiplets as in [14]. This gives the anomalies

Jþ; J3þ J− J3− J2þJ− JþJ2−
−2 12 1308 28 −210

; ð7Þ

and this time we get ϵ ¼ 1
759

ð558þ ffiffiffiffiffiffiffiffiffiffi
8017

p Þ≃ 0.853146.
With this value of ϵ, we find the M3 and M0

3 operators
violate the unitarity bound; thus, they get decoupled as
well. Finally, after removing these operators, we get the
anomalies

Jþ; J3þ J− J3− J2þJ− JþJ2−
0 −2 622 14 −112

; ð8Þ

and

aðϵÞ ¼ −
3

32
ð375ϵ3 − 810ϵ2 þ 559ϵ − 124Þ; ð9Þ

cðϵÞ ¼ 1

32
ð−1125ϵ3 þ 2430ϵ2 − 1679ϵþ 374Þ: ð10Þ

By maximizing aðϵÞ, we obtain ϵ ¼ 13
15

and the central
charges

a ¼ 43

120
; c ¼ 11

30
: ð11Þ
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These are exactly the same values as those of the AD
theory [24,25]. We also find that the operator M5 has the
conformal dimension Δ ¼ 6

5
, which is the value for the

Coulomb branch operator of the AD theory. The value of
the central charge c ¼ 11

30
is the minimal value of any

interactingN ¼ 2 SCFT [12]. Therefore, we claim that our
gauge theory flows to the AD theory with four free chiral
multiplets in the IR. In this sense, our construction gives a
“Lagrangian” description of the “non-Lagrangian” AD
theory.
Superconformal index.—As an application of our gauge

theory description, let us compute the superconformal
index, or the partition function on S1 × S3 of the AD theory.
The superconformal index for the N ¼ 1 theory is

defined as

IN¼1ðp; q; ξÞ ¼ Trð−1ÞFpj1þj2þR=2qj2−j1þR=2ξF ; ð12Þ

where j1 and j2 are the Cartan generators of the Lorentz
group SUð2Þ1 × SUð2Þ2, and R and F denote the gen-
erators of the Uð1ÞR and the Uð1ÞF symmetries, respec-
tively. While R can be chosen to be any candidate R charge,
here we use R0. After fixing the superconformal R charge
through the a-maximization, we redefine ξ → ξðpqÞϵ=2 to
get the proper index.
Along the RG flow of our gauge theory, the operators

M1, M3, M0
3, and Trϕ2 hit the unitarity bound and get

decoupled. Therefore, we should remove them from the
index [26], similar to the prescription of [14]. This gives us
the integral

IUV ¼ κ
Γ(ðpqÞ3ξ−6)
Γ(ðpqÞ1ξ−2)

I
dz
2πiz

Γ(z�ðpqÞ1=4ξ1=2)Γ(z�ðpqÞ−5=4ξ7=2)Γ(z�2;0ðpqÞ1=2ξ−1)
2Γðz�2Þ ; ð13Þ

where we used the abbreviation fðz�Þ≡ fðzÞfðz−1Þ and
fðz�2;0Þ≡ fðz2Þfðz−2Þfðz0Þ. Here κ ¼ ðp;pÞðq; qÞ with
ðz; qÞ ¼ Q

n≥0ð1 − zqnÞ and ΓðzÞ is the elliptic gamma
function

ΓðzÞ≡ Γðz;p; qÞ ¼
Y
m;n≥0

1 − z−1pmþ1qnþ1

1 − zpmqn
: ð14Þ

Each Γ factors in the numerator comes from each chiral
multiplets and the factor κ=Γðz�2Þ is coming from the
vector multiplet. The factor 1

2
is from the Weyl group of

SUð2Þ. Note the term Γ(ðpqÞ1ξ−2) in the denominator: it is
there to remove the contribution from the decoupled
operator Trϕ2. We also removed the contributions from
the singletsM1,M3,M0

3 in the integral. This should give us

the integral that corresponds to the contribution of the
interacting part of the theory only.
Now, in order to obtain the index with the correct super-

conformal R charge, we reparametrize ξ → ξðpqÞ13=30. The
N ¼ 2 superconformal index is defined as

IN¼2ðp; q; tÞ ¼ Trð−1ÞFpj1þj2þrqj2−j1þrtI3−r; ð15Þ

where I3 and r denotes the Cartan of SUð2ÞR symmetry
and the generator of Uð1Þr symmetry, respectively. We
can map to the canonical N ¼ 2 fugacities by taking
ξ → ½tðpqÞ−2=3�1=5. In our convention, theN ¼ 1 R charge,
R, can be mapped to theN ¼ 2R charges as R ¼ 2

3
rþ 4

3
I3.

This gives the final expression

IN¼2 ¼ κ
Γ(ðpq=tÞ6=5)
Γ(ðpq=tÞ2=5)

I
C

dz
2πiz

Γ(z�ðpqÞ2=5t1=10)Γ(z�ðpqÞ−1=5t7=10)Γ(z�2;0ðpq=tÞ1=5)
2Γðz�2Þ : ð16Þ

Here the contour of the integral C (which is the unit circle around z ¼ 0) should include the pole at z ¼ ðpqÞ−1=5t7=10,
but not at z ¼ ðpqÞ1=5t−7=10; see the related discussion in [21]. In practice, it is easier to consider reparametrization
p ¼ t3y, q ¼ t3=y, t ¼ t4=v and expand the integral in t. Let us write down the first few terms as a series expansion in t.
We get

IN¼2ðt; y; vÞ ¼ Trð−1ÞFt2ðEþj2Þy2j1v−ðI3þrÞ

¼ 1þ t12=5v6=5 − t17=5v1=5χ2ðyÞ þ t22=5v−4=5 þ t24=5v12=5

þ t27=5v6=5χ2ðyÞ − t29=5v7=5χ2ðyÞ − t6 − t32=5v1=5(χ3ðyÞ þ χ1ðyÞ)
þ t34=5v2=5 þ t7v−1χ2ðyÞ þ t36=5v18=5 þ t37=5v−4=5χ2ðyÞ
þ t39=5v12=5χ2ðyÞ þ t8v − t41=5v13=5χ2ðyÞ þ t42=5v6=5(χ3ðyÞ − χ1ðyÞ)
− t44=5v7=5(2χ3ðyÞ þ χ1ðyÞ) − 2t9χ2ðyÞ þOðt46=5Þ; ð17Þ
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where χ2j1þ1ðyÞ is the character of the spin-j representation
of the SUð2Þ1 rotation group.
Let us now see some limits of the index. We find that the

Coulomb branch limit of the index (pq=t ¼ u, p, q, t → 0)
is given by

IC ¼
�
1 − u2=5

1 − u6=5

�I
dz
2πiz

1 − z�2

2ð1 − z�2;0u1=5Þ
¼ 1

1 − u6=5
; ð18Þ

as expected, because the Coulomb branch is generated by a
single operator with Δ ¼ r ¼ 6

5
.

Also, we find that the Macdonald limit p → 0 indeed
reproduces the leading order of the result given in [17],

IM ¼ 1þ qtþ q2tþ q3tþ � � � : ð19Þ
The absence of the q0t1 term signals that there is no
conserved current multiplet, which should contribute
t=ð1 − qÞ to the index. The term qt=ð1 − qÞ comes from
the stress tensor multiplet. Note that there is no term of the
form q2t2, which means that a short multiplet that generally
appears in the operator product expansion T × T is absent
in this theory. This is precisely the condition to saturate the
bound c ≥ 11

30
derived in [12].

Furthermore, we reproduce the Schur limit t → q of the
index predicted in [10] in the leading order as well. It would
be nice to prove that the integral formula (17) indeed
reproduces the closed-form formula for the Macdonald
index given in [17] or the Schur index given by the vacuum
character of the Yang-Lee model,

χc¼−22=5
0 ðqÞ ¼

X
n≥0

qn
2þn

ðqÞn
¼ 1

ðq2; q5Þðq3; q5Þ ; ð20Þ

where ðqÞn ≡Q
n
m¼1ð1 − qmÞ and the second equality is the

Rogers-Ramanujan identity.
Discussion.—In this Letter, we have found an N ¼ 1

gauge theory obtained by the deformation of the N ¼ 2
SUð2Þ gauge theory with four fundamental hypermultip-
lets, which realizes the minimal N ¼ 2 SCFT at the end
point of the RG flow. We find that our N ¼ 1 theory
exhibits an emergent extendedN ¼ 2 supersymmetry. This
theory provides a handle for investigating various aspects
of the non-Lagrangian AD theory which was previously
inaccessible. As an application, we computed the full
superconformal index. Let us make a few comments.
The deformed theory we study (after giving a VEV) has

the matter content similar to the N ¼ 2 SUð2Þ Nf ¼ 1
gauge theory, except for the four extra singlets. This is
closely related to the setup used to obtain the AD theory in
[7], where they set the mass parameters and move into a
particular point in the Coulomb branch. It appears that our
superpotential and extra chiral multiplets have the effect of

setting the relevant parameters to be the special value
required to be at the point for the AD theory. It is interesting
to ask whether there is a generic way of engineering such a
flow, which may give us a way to obtain Lagrangian
descriptions for the other SCFTs as well.
It is widely believed that every N ¼ 2 SCFT (except for

a free hypermultiplet) has a Coulomb branch, and the AD
theory is no exception. For our gauge theory, it is the singlet
operatorM5 that ends up being the chiral operator of the IR
theory parametrizing the Coulomb branch. However, it is
unclear from the gauge theory perspective why giving an
expectation value to this operator should cause the theory
to be in the Coulomb phase. It would be interesting to
understand how the Coulomb phase appears in the IR.
There is a similar result realizing the N ¼ 2 E6 SCFT

[26] as the end point of the RG flow of an N ¼ 1 gauge
theory [27]. This is somewhat similar to our result, but
the way each model works is quite different. In our case,
some of the operators decouple along the RG flow due to
the accidental global symmetry. Moreover, the Coulomb
branch appears at the end of the RG flow is not visible from
the high energy.
Finally, we point out that the partition function of the AD

theory on other manifolds can be computed by using our
gauge theory description. It would be interesting to further
develop this direction.
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