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A novel method for deriving energy conditions in stable field theories is described. In a local classical
theory with one spatial dimension, a local energy condition always exists. For a relativistic field theory, one
obtains the dominant energy condition. In a quantum field theory, there instead exists a quantum energy
condition, i.e., a lower bound on the energy density that depends on information-theoretic quantities. Some
extensions to higher dimensions are briefly discussed.
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Introduction.—Perhaps the most important and powerful
concept in physics is “energy.” In addition to being closely
associated with time evolution and conservation laws, the
energy must normally be bounded below, in order for a
physical system to possess a stable ground state.
In a local field theory, the energy H is the integral of a

canonical energy density h, calculated using Noether’s
theorem. In many classical field theories, h is itself a positive
quantity; for example, in the Klein-Gordon theory, the
Hamiltonian takes the form h ¼ 1

2
ð∂tϕÞ2 þ 1

2
ð∂iϕÞ2 ≥ 0.

However, in certain theories such as Maxwell, the canonical
energy density is not gauge invariant or positive, and it is
necessary to add an “improvement term” in order to obtain a
suitable energy density [1–4]. Since these improvement
terms are total derivatives, they do not affect the integrated
energy if the fields fall off fast enough at infinity.
In general relativity (GR), there is no covariant positive

stress tensor for the gravitational field itself, and the proof
of the global positive energy theorem—which requires
the matter fields to obey the dominant energy condition:
Tabtaub ≥ 0, for ta, ua in the future light cone—is more
subtle [5–7]. However, the physical motivation for assum-
ing that any particular energy condition holds generally is
unclear [8] (but cf. Ref. [9]). Worse, quantum field theory
(QFT) violates all positive energy conditions written in
terms of local quantum fields [10]. Once these field theories
are coupled to gravity, this raises grave questions [11,12]
about whether global results such as singularity theorems
[13–15] and theorems ruling out causality violations
[16–22] still apply. Yet some of these results can still be
proven from plausible nonlocal inequalities, involving
integrals of the energy [23–31] and/or entropic quantities
associated with various regions of spacetime [32–35].
ThisLetter outlines ageneralmethod for proving that stable

local field theories will necessarily possess geometrically
localized energy conditions. That is, given the fact that an
integrated energy density is positive, we will show that there
alwaysexists a lowerboundon theenergydensity at anypoint.
The nature of this lower boundwill depend on the dimension,
and also whether the theory is classical or quantum.

For a classical theory with d spatial dimensions, the
lower bound on the energy density may depend on fields
localized to a d − 1 dimensional surface. When d ¼ 1, this
proves the existence of a strictly local energy condition.
There is a potential loophole for gravitational theories,
arising from the fact that the Hamiltonian energy density
vanishes on shell. But the result still applies if one restricts
attention to the matter sector, on any background spacetime
admitting a positive global energy.
The quantum case is more subtle. Here, the energy

condition also depends on some purely information-
theoretic quantities defined on one side of the d − 1
dimensional surface. More precisely, the energy condition
is “semilocal,” meaning that it is invariant under all unitary
transformations on one side (and does not depend at all on
the other side). A classic example of a semilocal quantity
is the entanglement entropy of a region [36–39]. As we
shall see, the stability of a QFT is closely related to strong
subadditivity [40] of the entanglement entropy (which
implies that the more strongly a quantum system A is
entangled with a system B, the less strongly it can be
entangled with another system C).
In many (perhaps all) QFTs, this lower bound on the

stress-energy tensor is given simply by a second derivative
of the entanglement entropy. This suggests that a “quantum
dominant energy condition” (QDEC) holds in every
Lorentz-invariant QFT. A special case—the quantum null
energy condition (QNEC)—has already been conjectured
on the basis of quantum gravity arguments [35,41], and
proven for conformal vacua [41], free or superrenormaliz-
able bosonic field theories [35,42] and in certain holo-
graphic contexts [43,44] (cf. Ref. [45]). However, this
Letter cannot rule out the possibility that in more compli-
cated field theories, additional semilocal terms may need to
be added to the QNEC to obtain the correct bound.
The core argument is simple yet novel. Whenever you

have a global energy condition, the knowledge of all the
information in a given region places a lower bound on
the energy in the complementary region. Now, when you
learn more about this quantity, its range of allowed values
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narrows and hence the lower bound is nondecreasing. This
basic logical truth turns out to imply the nontrivial field
theory results stated above.
Classical d ¼ 1 case.—Suppose we have a classical field

theory with one spatial dimension, parametrized by some
coordinate x, and a set of fields ϕ1ðxÞ…ϕnðxÞ, optionally
satisfying certain local constraints of the form

Cðϕi;ϕi
0;ϕi

00…Þ ¼ 0; ð1Þ
involving some finite maximum numberD of x derivatives.
The field data may be specified arbitrarily, as long as one
satisfies these constraints, some choice of fall-off condi-
tions at x ¼ �∞, and suitable differentiability conditions
on the fields ϕi. It will be important that there are no
nonlocal constraints on the data. We will not assume any
kind of translation invariance, and everything that follows
may be generalized to the case of a theory defined on a
finite spatial interval in an obvious way.
In practice, such problems often arise when there is a

1þ 1 dimensional theory with a well-defined Cauchy
problem, so that we may identify a one-dimensional
Cauchy slice Σ (either spacelike or null) on which data
may be specified, subject only to local constraints. In this
way, the results that follow may be applied to field theories
in 1þ 1 spacetime dimensions; however, the time evolu-
tion of the initial data plays no role in what follows.
Let us assume that we can define an “energy density”

Tðϕi;ϕi
0;ϕi

00;…Þ, locally defined as a function of at most
K derivatives of ϕi, which satisfies a global or integrated
energy condition:

E ¼
Z þ∞

−∞
Tdx ≥ 0: ð2Þ

(This notation is schematic, covering many possible sta-
bility integrals such as

Z
Σ
TabuadΣb ≥ 0; ð3Þ

where ua is a vector in the future light cone, Σ is a Cauchy
slice, and dΣa is the natural integration measure for fluxes
crossing Σ.)
Does any such theory also obey a local energy condition?

The answer is yes. However, the local energy condition
may require the energy density to be improved by the
addition of a total derivative term, i.e., TðxÞ þM0ðxÞ ≥ 0,
for some M. This integrates to the same total energy E, so
long as M → 0 as x → �∞.
In order to derive the energy condition, we must identify

the correct choice of M. We illustrate our method with the
following parable: suppose that an ant is marching along
the x axis from x ¼ −∞ towards x ¼ þ∞, making note of
all the field values she observes along the way. Partway
through the journey, having arrived at the point x ¼ x0, the
ant asks herself, “Given everything I have observed so far

(from −∞ to x0), what is the minimum possible energy I
might encounter in the remaining part of my journey (from
x0 to þ∞)?” Let us write this quantity as

Mðx0Þ ¼ inf

�Z þ∞

x0

Tdx

����ϕiðx < x0Þ
�
; ð4Þ

where the infðAjBÞ symbol means the lower bound on A,
consistent with the knowledge in B. The stability condition
(2) places a lower bound on M, ensuring it is well defined
(this is our sole use of global stability in this section).
Since the constraints and differentiability conditions are

local, M can depend only on the local field data at x0. The
jump conditions constrain only maxðD − 1; K − 1Þ deriv-
atives of ϕi, so only that many derivatives of ϕi can appear
in M. Thus the ant does not actually require any long-term
memory to calculate M; knowledge of a finite number of
derivatives at the point x0 suffices.
As the ant continues her journey to higher values of x,

she learns more about the value of the fields, placing
further constraints on the allowed states of the system.
Now the minimum value of any quantity cannot decrease
upon learning more information. Hence, for any point
x1 ¼ x0 þ Δx further along the journey (Δx > 0),

Mðx0Þ ≤ inf

�Z þ∞

x0

Tdx

����ϕiðx < x1Þ
�

ð5Þ

¼
Z

x1

x0

TdxþMðx1Þ: ð6Þ

Thus, whileM can increase due to the ant learning more, it
can only decrease when the ant actually passes some energy
and leaves it behind. By taking Δx to be infinitesimal, one
obtains the desired local inequality:

T þM0 ≥ 0: ð7Þ
Thus, the theory obeys a local energy condition.
Now consider a relativistic field theory satisfying the

stability condition (3), with causal propagation of informa-
tion, and no fluxes of 2-momentum through spatial infinity.
Let Σ be a partial Cauchy slice extending from spacelike
infinity to a point x0. DefineMaðx0Þ for null a as the lower
bound of pa in the complement to Σ, given the data on Σ.
Then Maðx0Þ is well defined and satisfies a monotonicity
property like Eq. (7) if x0 is shifted in a spacelike direction.
So we obtain a covariantly improved dominant energy
condition: ðTab þ ϵca∂cMbÞtaub ≥ 0, where ta and ua point
in the future light cone. (The improvement term is con-
served on the first index, but is not manifestly symmetric.)
Gravitational theories.—The above result may be

applied on any curved background spacetime, as long as
it admits a positive global energy.
However, in diffeomorphism invariant theories such as

GR (or dilaton gravity [46], which is better behaved than
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GR when d ¼ 1) the constraint equations imply that the
Hamiltonian density vanishes on shell, up to a total
derivative term [47]. Thus, the argument of the previous
section has a potential loophole: since T is itself a total
derivative, conceivably T þM0 ¼ 0, and 0 ≥ 0 is not an
interesting energy condition. But see Ref. [48] for a
construction that might work (outside event horizons).
Quantum field theory.—Suppose we try to apply the

same argument to QFT, where there are no local energy
conditions [10]. Instead we obtain a semilocal condition,
which can depend on information-theoretic quantities on
one side of the point.
Let us begin by considering a (possibly mixed) density

matrix ρ describing the state at a given moment of time in a
1þ 1 field theory. This state may be restricted to any region
R to obtain ρR. However, we cannot recover the full state just
from knowing the states in R and its complementary region
R̄, because we also have to know how they are entangled.
We can still define the quantity M as a bound on the

expectation value of the energy on the right of a point x0,
given the density matrix ρx<x0 in the causal wedge to the
left of x0:

Mðx0Þ ¼ inf

�Z þ∞

x0

hTidx
����ρx<x0

�
; ð8Þ

and it still follows that hTi þM0 ≥ 0 at every point.
However, it is no longer the case that M is a local

function of the quantum fields in the vicinity of x0.
In particular, there are various entropy inequalities; for
example, strong subadditivity [40] states that for any 3
quantum subsystems A, B, C, the von Neumann entropy
SðRÞ ¼ −trðρR ln ρRÞ satisfies (for axiomatic characteriza-
tions of the von Neumann entropy, see Refs. [49–52]):

SðABÞ þ SðBCÞ ≥ SðABCÞ þ SðBÞ; ð9Þ

SðABÞ þ SðBCÞ ≥ SðAÞ þ SðCÞ: ð10Þ

If we choose B to be a neighborhood of the point x0, and
let A and C be the regions to the left and right of that
neighborhood, then the second form of strong subadditivity
(10) implies that the more strongly the local fields near x0
are entangled with data to their left, the less strongly they
can be entangled with data to the right (and vice versa).
Thus, when stitching together the local density matrices

into a consistent state of the whole system, there are
nonlocal constraints. Suppose we are handed some density
matrices ρA, ρB, and ρC, and we ask whether we can find
a consistent global state ρABC with finite energy that
restricts to these states in the respective regions A, B, C.
Equation (9) tells us that we might be able to find a
consistent entangled state ρAB and also a consistent state
ρBC, yet be unable to combine them into a consistent state
of the entire line ρABC. Because these constraints are

nonlocal, M can depend on information arbitrarily far to
the left of the point x0. This explains how a QFT can obey
global, but not local energy conditions.
This motivates us to identify M ¼ −ðℏ=2πÞS0ðρx<x0Þ,

so that

hTi ≥ ℏ
2π

S00; ð11Þ

where c ¼ kB ¼ 1. Although S is divergent, its derivatives
are normally finite. [In nonsmooth conformal vacua, T may
diverge [29,53], but S00 compensates [41]. An additional
ðS0Þ2 term explains the limit on how far the negative and
positive pulses may be separated.] When evaluated along a
null Cauchy slice, this inequality is called the QNEC, and
was derived in special cases in Refs. [35,41–44]. But we
will argue that more generally, Eq. (11) probably holds
more in all states of all Lorentz-invariant field theories,
on all Cauchy slices. In passing, we will rederive the fact
that Eq. (11) is saturated for first order perturbations to the
vacuum [42,54,55].
We now justify our choice of M. Although M is

nonlocal, it is still highly constrained. For example, M
must be invariant under any unitary operator U acting in a
region strictly to the left of x0:

MðUρx<x0U
†Þ ¼ Mðρx<x0Þ; ð12Þ

because a unitary acting on the left does not change the
set of states allowed on the right. (Of course it is also
unchanged by a unitary acting to the right of x0, since by
construction M depends only on the left region x < x0.)
This tells us that the dependence of M on the physics to

the left of x0 must in a certain sense be purely information
theoretic; it is sensitive only to the entanglement of
information, not to the details of the material in which
the information is encoded. However, M may depend in a
more detailed way on the physics right at x0; i.e., it need
not be invariant under unitaries acting in an interval that
includes x0. Let us refer to a functional of the density matrix
satisfying these properties as (left) semilocal.
More generally, we can imagine acting with a unitary

that couples the region x < x0 to some auxiliary system Q
whose initial state ρQ is unentangled with the QFT state.
Such transformations are equivalent [56,57] to trace-
preserving, completely positive maps: ρ → F½ρ�. (A “com-
pletely positive” map is one which preserves positivity of
the density matrix even if it is entangled with another
system.) These transformations are usually not invertible
and do not preserve the information to the left of x0. But by
construction, this new state F½ρx<x0 � must still be compat-
ible with the state to the right of x0. Hence, the lower bound
on the energy to the right cannot increase under such a
transformation (because we could imagine starting with a
state arbitrarily near the lower bound, and then acting
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with F). We conclude that M is monotonically decreasing
under such maps:

MðF½ρx<x0 �Þ ≤ Mðρx<x0Þ: ð13Þ
We can also place a constraint on M from dimensional

analysis, assuming that T (the energy density) is identified
with the stress tensor (which is weight 2 in a 1þ 1
dimensional theory). In a CFT, MðxÞ must be weight 1
under scale invariance. Or, if we choose our Cauchy slice to
be null, MðvÞ must be weight 1 under a Lorentz boost
v → avþ b.
Up to a multiplicative constant, the only entity I know of

that satisfies all of these constraints is −S0. This is indeed
monotonically decreasing under all completely positive
maps, as can be seen by replacing the derivative with a
finite difference to get the conditional entropy on two
subsystems SðABÞ − SðAÞ. By the first form of strong
subadditivity (9) we now have

SAB − SA ≥ SABQ − SAQ; ð14Þ

hence; S0ðρx<x0Þ ≥ S0ðF½ρx<x0 �Þ: ð15Þ

Furthermore, in a relativistic theory, S0 places a lower
bound on the energy integral

2π

ℏ

Z þ∞

x0

hTidx ≥ −S0ðρx>x0Þ ≥ −S0ðρx<x0Þ; ð16Þ

where the first inequality follows [44,58,59] from monot-
onicity of relative entropy [60,61] together with the Unruh
effect [62,63] [here T must be the canonical (Noetherian)
energy density, with respect to which the vacuum state is
thermal in

R
Tðx − x0Þdx when restricted to the Rindler

wedge x > x0 [64]. Otherwise the addition of a local
improvement term may also be necessary], while the
second inequality follows from the second form of strong
subadditivity (10).
For a state that is a first order perturbation to the vacuum

state (ρ ¼ ρ0 þ δρ), one can in fact prove that M ¼
−ℏS0=2π (fixing the multiplicative constant): since both
inequalities in Eq. (16) are saturated for ρ0, and satisfied in
all states, they must also be saturated at first order in δρ
(cf. Refs. [42,54,55]).
It is hard to think of any other quantity which would

satisfy the desired criteria. For example, we cannot sub-
stitute the derivative of the Renyi entropy Sn ∝ ln trðρnÞ,
since this does not satisfy strong subadditivity. More
generally, let us suppose that the greatest lower bound is

M ¼ −
ℏ
2π

S0 þ G; ð17Þ

where G is a positive [by Eq. (16)] semilocal quantity of
weight 1, that vanishes for all first order peturbations to the

vacuum. Then the semilocal quantum energy condition will
take the form

hTi ≥ ℏ
2π

S00 −G0: ð18Þ

Note that G cannot be constructed out of any smooth
functional of Sn (including S) and their derivatives, because
in order for the quantity to be weight 1, there would have
to be a single derivative. But in pure states, Snðρx<x0Þ ¼
Snðρx>x0Þ, which implies that S0n is odd under spatial
reflections, and hence cannot have a consistent sign.
Also, G ¼ 0 whenever the QNEC has already been

proved [35,41–44], suggesting it vanishes generally. That
would imply that Eq. (16) is the strongest possible bound
on the energy to the right of x0. If you start with an excited
state, this tells you the maximum amount of energy
extractable from that region (without using classical com-
munication to teleport information [65–67]).
Applying the same arguments covariantly using Eq. (3),

it is natural to conjecture a quantum dominant energy
condition (QDEC):

hTabitaub ≥
ℏ
2π

ðϵcaϵdb∂c∂dSÞtaub; ð19Þ

where ta and ua are restricted to the forwards light cone.
(The QDEC implies the QNEC, by taking ta, ua to be the
same null vector.) The improvement term is symmetric and
conserved.
Higher dimensions.—We can also generalize the argu-

ment to the case of d > 1 spatial dimensions. But now the
analogue of x0 will be a d − 1 dimensional surface ς, and it
may be thatM depends in a nonlocal way on the fields on ς.
We have a choice of which “global” energy condition

to use. One possibility is Eq. (3), the positivity of the
energy-momentum vector, found by integrating Tab along a
Cauchy slice Σ. A more interesting choice is the “average
null energy condition” (ANEC), which states that for any
null geodesic γ,

Z
∞

−∞
Tvvdv ≥ 0; ð20Þ

where v is an affine null parameter along γ. (Recent
arguments suggest that any reasonable QFT will satisfy
the ANEC [68–71], cf. Refs. [72–77]).
In either case, let us define MðςÞ as the lower bound of

the energy to the right side of ς, given the state of all the
fields on the left side. We can now derive an energy
condition at a point p ∈ ς in a similar manner as before. We
will do this by considering a variation δς with support only
in a small neighborhood of the point p. By applying the
same monotonicity argument as in the previous section, one
can show that there exists a positive function of the form
TðpÞ þM0ðς; δςÞ ≥ 0. But now the improvement term M
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might depend on fields anywhere along ς. So the improved
energy condition might not be local, even classically.
In the case where we start with Eq. (20) in a QFT, an

argument similar to the previous section suggests that the
QNEC [35] holds for ς lying on a stationary null surface:

hTvvðpÞi ≥
ℏ

2πA
ðδvÞ2SðςÞ; ð21Þ

where v is an affine null coordinate and A is the transverse
area along which the slice ς is translated by δv. But further
work is needed to show that there is no additional
correction term in general interacting field theories.
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