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Seemingly unrelated models of inflation that originate from different physical setups yield, in some
cases, identical predictions for the currently constrained inflationary observables. In order to classify the
available models, we propose to express the slow-roll parameters and the relevant observables in terms of
frame and reparametrization invariant quantities. The adopted invariant formalism makes manifest the
redundancy that afflicts the current description of inflation dynamics and offers a straightforward way to
identify classes of models which yield identical phenomenology. In this Letter, we offer a step-to-step
recipe to recast every single field inflationary model in the proposed formalism, detailing also the procedure
to compute inflationary observables in terms of frame and reparametrization invariant quantities. We hope
that our results become the cornerstone of a new categorization of viable inflationary models and open the
way to a deeper understanding of the inflation mechanism.
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Introduction.—According to present knowledge [1], the
Universe underwent a phase of exponential expansion in
the very first moments of its existence [2–5]. This period,
known as inflation, is crucial for setting the peculiar initial
conditions required by the ΛCDM of cosmology [6].
Although the available dedicated measurements have
already shed some light on the features of inflation, the
mechanism behind its dynamics still remains a mystery.
During the last decades, the puzzle of inflation has been

tackled in amultitude of approaches, encapsulated inmodels
that originate from very different background physics. A
common trait of many inflationary scenarios is that they
involve scalar degrees of freedomwith properties beyond the
standard model limits, and/or extend the theory of gravity.
(In this Letter we do not consider theories in which the
inflation is a vector degree of freedom. For a reviewwe refer
the reader to Ref. [7].) To date, many review articles [7–9]
have attempted to classify the viable models of inflation
according to various criteria, most commonly by their
theoretical origin. Interestingly, despite the different starting
points, there are known cases [10–19] of seemingly different
models that give identical predictions for the inflationary
parameters currently constrained by experiments, such as
the spectral index ns and the tensor-to-scalar ratio r. It could
then be sustained that in the current descriptions of inflation
there is a redundancy which unnecessarily complicates the
landscape of viable frameworks and obscures the under-
standing of the underlying mechanism.
The purpose of the present Letter is to expose the origin

of this redundancy and to present a clear method to sort the
available inflationary models into classes of phenomeno-
logically equivalent frameworks. To this purpose, working
in the context of scalar-tensor theories of gravity, we show
how the slow-roll parameters and the relevant observables

can be written in a frame and reparametrization invariant
way. Our starting point is the quantities proposed originally
in Refs. [20,21], which allow for a more versatile approach
than methods based purely on frame invariance [22–26].
Our results prove unequivocally that inflationary parame-
ters depend solely on one thing: the invariant potential. As a
consequence, distinct models characterized by the same
invariant potential yield, inevitably, the same phenomeno-
logical consequences. This conclusion allows for the
sought categorization of the known inflation frameworks
in a straightforward way. The resulting classes of equiv-
alent models expose the redundancy that afflicts the
traditional formalism, paving the way for a deeper under-
standing of the inflationary mechanism.
In the following, after introducing the necessary formal-

ism, we present a detailed, cookbook level recipe to
rephrase different models in a frame and reparametrization
invariant fashion under the slow-roll approximation. With
this invariant formalism at hand, we then show preliminary
examples of the power of the proposed categorization by
explicitly studying two sets of models that, despite different
origins, yield the same inflationary phenomenology.
Frame and parametrization invariant formalism.—The

action of a general scalar-tensor theory of gravity without
derivative couplings and higher derivative terms is specified
by four arbitrary functions of the scalar fieldΦ [27]:AðΦÞ,
BðΦÞ, VðΦÞ, and σðΦÞ. [We have changed the notation of
Ref. [27] relabeling the function αðΦÞ as σðΦÞ.] Explicitly,
we have

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½− 1
2
AðΦÞM2

PlRþ 1
2
BðΦÞgμν∇μΦ∇νΦ

− VðΦÞ� þ Smðe2σðΦÞgμν; χÞ; ð1Þ
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where the Ricci scalar R is determined by the metric gμν
[the adopted signature is ðþ;−;−;−Þ], the reduced Planck
mass is denoted by MPl, and Sm is the action for the matter
fields represented by χ.
The action, Eq. (1), encapsulates many inflationary

models, as it allows for a nonminimal coupling of the
involved scalar field Φ to curvature, a noncanonical form
for its kinetic term, an arbitrary scalar potential, and a
possible nonminimal coupling of Φ to matter. Notice that
Eq. (1) also encompasses fðRÞ theories including the
Starobinsky [2] inflation because of their equivalence
to scalar-tensor theories defined by the O’Hanlon action,
−½ΦRþ VðΦÞ�, where the potential V is the Legendre
transformation of f [28]. In this Letter, we will not consider
single scalar actions with more complicated forms (see for
instance Ref. [29]); however, the proposed formalism can
be extended to models which generalize the action Eq. (1)
for multiple scalar fields [30].
The action functional Eq. (1) preserves its structure, up

to a boundary term, under a conformal rescaling of the
metric

gμν ¼ e2γ̄ðΦ̄Þḡμν; ð2Þ
and redefinition of the scalar field,

Φ ¼ f̄ðΦ̄Þ; ð3Þ
provided that the functions of the scalar field transform
according to [27]

ĀðΦ̄Þ ¼ e2γ̄ðΦ̄ÞA(f̄ðΦ̄Þ); ð4Þ
V̄ðΦ̄Þ ¼ e4γ̄ðΦ̄ÞV(f̄ðΦ̄Þ); ð5Þ
σ̄ðΦ̄Þ ¼ σ(f̄ðΦ̄Þ)þ γ̄ðΦ̄Þ; ð6Þ
B̄ðΦ̄Þ ¼ e2γ̄ðΦ̄Þ½ðf̄0Þ2B(f̄ðΦ̄Þ)

−6M2
Plðγ̄0Þ2A(f̄ðΦ̄Þ) − 6M2

Plγ̄
0f̄0A0�: ð7Þ

Here a prime denotes the differentiation of the correspond-
ing quantity with respect to its argument, for instance
f̄0 ≡ df̄ðΦ̄Þ=dΦ̄ and A0 ≡ dAðΦÞ=dΦ.
Picking an explicit form for these four functions desig-

nates a theory in a particular conformal frame and sets a
specific parametrization for the scalar field Φ. The expres-
sions for two of the four functions can then be modified to
our liking through the above transformations, thereby
recasting the original theory in another frame and para-
metrization. When A is identically constant the theory is
specified in the Einstein frame, while for a constant σ the
characterization is given in the Jordan frame.
As a result of the transformation rules, Eqs. (4)–(7), the

following quantities are invariant under a general compo-
sition of conformal rescaling of the metric and reparamet-
rization of the scalar field [20]:

ImðΦÞ≡ e2σðΦÞ

AðΦÞ ; ð8Þ

IVðΦÞ≡ VðΦÞ
ðAðΦÞÞ2 ; ð9Þ

IϕðΦÞ≡ 1ffiffiffi
2

p
Z �

2AB þ 3ðA0Þ2M2
Pl

A2

�1
2

dΦ: ð10Þ

(To make the physical implications of these invariants
evident,we changed the original notation ofRef. [20], which
is recovered through ImðΦÞ≡I1ðΦÞ, IVðΦÞ≡I2ðΦÞ,ffiffiffi
2

p
IϕðΦÞ≡ I3ðΦÞ and by suppressing MPl factors since

the scalar field in Ref. [20] is dimensionless. For specific
parameterizations, it could also be necessary to consider the
negative branch of the square root in IϕðΦÞ as explained in
Ref. [20].) The quantity IϕðΦÞ provides an invariant
description of the scalar degree of freedom and has the
corresponding dimension. The integrand in Eq. (10) can be
interpreted as the volume form of the one-dimensional space
of the scalar field; therefore, IϕðΦÞ measures the invariant
“distance” in such space [21,30]. Constant values of Iϕ

signal that the scalar field is not dynamical,whereas negative
values for the expression under the square root in Eq. (10)
indicate that the theory contains a ghost [20,31].By inverting
the relation Eq. (10) and regarding Iϕ as a new independent
degree of freedom in place of Φ, we can write the action
Eq. (1) in an invariant fashion [20],

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
−
M2

Pl

2
R̂þ 1

2
ĝμν∇̂μIϕ∇̂νIϕ − IV

�

þ SmðImĝμν; χÞ; ð11Þ

where the hatted quantities are functions of the invariant
metric ĝμν ≡Agμν. The action in Eq. (11), which possesses
the usual Einstein frame form with respect to the metric ĝμν,
clarifies the physical meaning of the remaining invariants,
Eqs. (8) and (9).
Im is a dimensionless quantity that characterizes the

nonminimal coupling in the Jordan frame and, correspond-
ingly, the universal interaction between matter and the
scalar field in the Einstein frame. Effectively, Im therefore
sets the coupling of gravity to the matter fields. For constant
Im the theory is equivalent to general relativity with a
minimally coupled scalar field, otherwise the scalar field
participates in mediating the gravitational interaction and is
sourced by the trace of the matter energy-momentum tensor
[20]. The second invariant, IV , has the dimension of a
Lagrangian density and plays the role of an invariant
potential.
From Eq. (11) it is also clear that the gravitational aspects

of the theory are uniquely specified by only two invariant
functions: ImðIϕÞ and IVðIϕÞ. The starting action in

PRL 118, 151302 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

14 APRIL 2017

151302-2



Eq. (1) depends instead on four functions, as it distin-
guishes between different choices of frame and paramet-
rization. Consequently, it is not surprising that more than
one of these choices could result in the same invariant
action Eq. (11) once the proposed invariant formalism is
applied. This is the case for models that according to Eq. (1)
differ by the choice of frame and parametrization, but that
are characterized by the same invariants ImðIϕÞ and
IVðIϕÞ, and therefore for Eq. (11) by the same invariant
action. In this sense, the action [Eq. (11)] provides a solid
criterion to establish equivalence classes of gravitational
theories and exposes the redundancy implicit in the tradi-
tional characterization provided by Eq. (1). In the follow-
ing, we will then refer to theories characterized by the same
ImðIϕÞ and IVðIϕÞ as equivalent gravitational theories.
Clearly, the proposed subdivisions of models in equiva-
lence classes can be further refined in cases where the new
scalar degree of freedom possesses additional nongravita-
tional interactions with the matter fields.
Notice that arbitrarily, many different invariants can be

defined on the basis of the quantities in Eqs. (8)–(10), for
instance by forming arbitrary functions of them, I j¼fðI iÞ,
by taking a quotient of derivatives, I j≡I 0

k=I
0
l≡dIk=dI l,

or by integrating, Ik ¼
R
I jI 0

ldΦ [20]. If the physical
observables are to be independent of the choice of frame
and parametrization in which a particular theory is speci-
fied, we expect that their expression can be given in terms
of our invariants. In the next section we demonstrate the
case of inflationary observables.
Inflationary parameters.—As Eq. (11) matches the

action in the Einstein frame with respect to the hatted
metric, we can easily rephrase the usual expressions for the
slow-roll parameters [1,32] in terms of the invariants in
Eqs. (8)–(10) [21]:

ϵ ¼ M2
Pl

2

�
d ln IV

dIϕ

�
2

; ð12Þ

η ¼ M2
Pl

IV

d2IV

dI2
ϕ

; ð13Þ

ξ2 ¼ M4
Pl

I2
V

dIV

dIϕ

d3IV

dI3
ϕ

: ð14Þ

Inflationary observables such as the tensor-to-scalar ratio r,
the scalar spectral index ns and the running of the index
dns=ðd ln kÞ can then be computed in the slow-roll approxi-
mation as

r ¼ 8M2
Pl

�
d ln IV

dIϕ

�
2

; ð15Þ

ns ¼ 1 − 3M2
Pl

�
d ln IV

dIϕ

�
2

þ 2
M2

Pl

IV

d2IV

dI2
ϕ

; ð16Þ

dns
d ln k

¼ 2M4
Pl

1

IV

d ln IV

dIϕ

�
4
d ln IV

dIϕ

d2IV

dI2
ϕ

− 3IV

�
d ln IV

dIϕ

�
3

−
d3IV

dI3
ϕ

�
; ð17Þ

and the number of e folds of inflation is instead given by

NðIN
ϕ Þ ¼

1

M2
Pl

Z
IN
ϕ

Iend
ϕ

IVðIϕÞ
�
dIVðIϕÞ
dIϕ

�−1
dIϕ; ð18Þ

where I end
ϕ is the field value at the end of inflation, obtained

by solving ϵðI end
ϕ Þ ¼ 1. Finally, we find for the amplitude

of the scalar power spectra:

As ¼
IV

12π2M6
Pl

�
d ln IV

dIϕ

�
−2
: ð19Þ

The adopted formalism shows that the expressions in
Eqs. (15)–(19) are, as expected, invariant quantities.
Furthermore, we find that the analyzed observables depend
solely on the invariant potential IVðIϕÞ. Therefore, as far
as the basic inflationary kinematics is concerned, not only
the models which emerge from equivalent gravitational
theories yield identical observables, but any class of
theories with the same functional form of IVðIϕÞ delivers
exactly the same phenomenology. This insight provides the
cornerstone for a classification of phenomenologically
equivalent scalar inflation models that we exemplify later
in this Letter.
The fact that inflationary observables are independent of

Im is not surprising: during inflation the dynamics of the
scalar field dominates, and the matter part of the action,
which involves the invariant nonminimal coupling, is
consequently negligible. Im may, however, play a role
in further distinguishing between inflation models through
observables such as the reheating temperature of the
Universe, the baryon asymmetry generated, the thermal
production of dark matter, and the non-Gaussianity param-
eters of inflation [7], which all depend on the couplings of
the inflation to matter.
Applying the formalism.—The proposed invariant for-

malism may be applied through the following procedure to
any inflationary model that can be cast in the form of the
action of Eq. (11): (1) For a given model of inflation,
specified by an action as in Eq. (1), identify the functions
AðΦÞ, BðΦÞ, VðΦÞ, and σðΦÞ. (2) Use Eq. (10) to compute
the invariant IϕðΦÞ and, if possible, invert the relation to
obtain ΦðIϕÞ. (3) Next use ΦðIϕÞ and Eq. (9) to calculate
the invariant potential IV(ΦðIϕÞ) ¼ IVðIϕÞ. (4) With
IVðIϕÞ and Eq. (12) compute ϵ ¼ ϵðIϕÞ. Then, provided
inflation ends, solve for ϵðI end

ϕ Þ ¼ 1 and integrate Eq. (18)
to obtain NðIϕÞ. If possible, invert it to obtain IϕðNÞ.

PRL 118, 151302 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

14 APRIL 2017

151302-3



(5) Once IϕðNÞ and IVðIϕÞ are known, the inflationary
observables can be obtained from Eqs. (15)–(19).
We exemplify now the procedure in the case of the Higgs

inflation model, specified by [33]

AðΦÞ ¼ M2 þ ξΦ2

M2
Pl

; ð20Þ

BðΦÞ ¼ 1; ð21Þ

VðΦÞ ¼ λ

4
ðΦ2 − v2Þ2; ð22Þ

σðΦÞ ¼ 0; ð23Þ

where ξ is the nonminimal coupling to gravity, λ is the
Higgs boson self-coupling, and v its vacuum expectation
value (VEV). We take the latter at its measured value,
v ¼ 246 GeV, and assume that M ≃MPl, MPl ≪ ξΦ,
ξ ≫ 1. In this regime, Iϕ Eq. (10) reduces to

IϕðΦÞ ¼
ffiffiffi
6

p
MPl ln

� ffiffiffi
ξ

p
Φ

MPl

�
; ð24Þ

where we set IϕðMPl=
ffiffiffi
ξ

p Þ ¼ 0. Inverting the last expres-
sion and using Eq. (9) results in

IVðIϕÞ≃ λ

4

M4
Pl

ξ2

�
1 − exp

�
−

ffiffiffi
2

3

r
Iϕ

MPl

��
2

: ð25Þ

Next, from Eqs. (12) and (13) we have

ϵ ¼ 4

3
exp

�
−2

ffiffiffi
2

3

r
Iϕ

MPl

��
1 − exp

�
−

ffiffiffi
2

3

r
Iϕ

MPl

��
−2
; ð26Þ

η ¼
�
2 − exp

� ffiffiffi
2

3

r
Iϕ

MPl

��
ϵ: ð27Þ

Solving now for ϵðI end
ϕ Þ ¼ 1 yields Iend

ϕ ≃ 0.94MPl. The
number of e folds is then given by Eq. (18) as

N ≃ 3

4

�
exp

� ffiffiffi
2

3

r
Iϕ

MPl

�
−

ffiffiffi
2

3

r
Iϕ

MPl

�
− 1: ð28Þ

By inverting this expression we obtain

Iϕ ≃
ffiffiffi
3

2

r
MPl ln

�
4

3
ðN þ 1Þ þ ln

�
4

3
ðN þ 1Þ

��
; ð29Þ

and by using Eqs. (26), (27), (16), and Eq. (15) we finally
have

ns ≃ 1 −
2

N þ 1
−
9 − 3 ln

h
4
3
ðN þ 1Þ

i
2ðN þ 1Þ2 ; ð30Þ

r≃ 12

ðN þ 1Þ2

8<
:1þ

3 − 3 ln
�
4
3
ðN þ 1Þ

�
2ðN þ 1Þ

9=
;: ð31Þ

These formulas correctly reproduce the results of the
original calculations in the Einstein frame [33] and the
Jordan frame [34,35] in the leading order.
Identifying equivalent models.—The invariant formalism

proposed in this Letter allows us to identify classes of
models which yield identical inflationary phenomenologies
in a straightforward way. In spite of the different
Lagrangians, models that yield the same invariant potential
IVðIϕÞ necessarily result in the same ranges of the relevant
inflationary observables. By using the procedure delineated
above, it is therefore possible to categorize the known
models of inflation in equivalence classes which, unequivo-
cally, correspond to phenomenologically different frame-
works. [Within each class, we can construct arbitrarily
many equivalent models by simply taking a different form
for ΦðIϕÞ.] We give an example of the power of this
formalism by identifying two classes of phenomenologi-
cally equivalent models.
Quadratic inflation and Coleman-Weinberg inflation in

induced gravity.—As a first example we consider here the
cases of quadratic and Coleman-Weinberg inflation in
induced gravity, presented in detail in Refs. [36] and
[13], respectively.
According to our procedure, the models are specified in

the first four columns of Table I, whereas the last three
columns present the expressions for the invariants Im, IV ,
and Iϕ that we obtained in these cases. The constant K and
the logarithm squared in the induced gravity model arise

TABLE I. The first class of inflationary models we consider encompasses the models of quadratic and Coleman-Weinberg inflation in
induced gravity.

A B V σ Im IV Iϕ

Quadratic 1 1 1
2
M2Φ2 0 1 1

2
M2Φ2 Φ

Coleman-Weinberg
inflation in
induced gravity

ξðΦ2=M2
PlÞ 1 1

4
K½ln2ðΦ=vΦÞ�Φ4 0 ð1=ξÞðM2

Pl=Φ2Þ 1
4
K½ln2ðΦ=vΦÞ�ðM4

Pl=ξ
2Þ MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 6ξÞ=ξp
lnðΦ=vΦÞ
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from the first nonzero term of the Taylor expansion of the
running scalar coupling λΦðΦÞ [13], given by

λΦðΦÞ ≈ 1

2!
β0λΦ ln

2
Φ
vΦ

≡ Kln2
Φ
vΦ

; ð32Þ

where vΦ ¼ MPl=
ffiffiffi
ξ

p
and βλΦ is the β function for the scalar

self-coupling λΦ.
It is straightforward to show through a direct calculation

that both these models share the same invariant potential

IVðIϕÞ ¼
1

2
M2I2

ϕ; ð33Þ

identifying

M2 ¼ K
2ξð1þ 6ξÞM

2
Pl: ð34Þ

Therefore, for Eqs. (15)–(19), the two models result
undoubtably in the same phenomenology despite being
distinct gravitational theories characterized by different Im.
A second example: E-type models.—We consider now

the following models of inflation: the generalization of the
Starobinsky potential (α-β model) [37] (M1), the E-type α
attractor [38] (M2), and the special ξ attractor [12] (M3). As
before, Table II presents the specifications of these models
in terms of the functions AðΦÞ, BðΦÞ, VðΦÞ, and σðΦÞ,
showing as well the corresponding expressions for the
invariants.
A straightforward calculation shows that the models

yield the same invariant potential

IVðIϕÞ ¼ M4ð1 − e−
ffiffiffiffiffiffiffiffiffiffi
ð2=3αÞ

p
ðIϕ=MPlÞÞ2; ð35Þ

identifying

α ¼ 1þ 1

6ξ
; M4 ¼ λM4

Pl; ð36Þ

and therefore the same phenomenology. The fact that these
models result in the same inflation features has been
previously noticed in the literature [12] and is made
manifest with our formalism.
New directions in model building.—Another perk of

the proposed invariant formulation is that it allows the

study of models detailed in invariant potentials which
are not elementary functions of Iϕ. Consider, for

instance, a scenario specified by A ¼ 1, B ¼ e−ðΦ
2=M2

PlÞ,
V ¼ M4e−ðbΦ=MPlÞ, resulting in

Iϕ ¼
ffiffiffi
π

2

r
MPlErf

�
1ffiffiffi
2

p Φ
MPl

�
; ð37Þ

where Erf is the “error function” usually appearing in
statistics. As its inverse function, InvErf, is also known, we
obtain

IVðIϕÞ ¼ M4 exp

�
−

ffiffiffi
2

p
bInvErf

� ffiffiffi
2

π

r
Iϕ

MPl

��
: ð38Þ

By computing the slow-roll parameters via Eqs. (12)
and (13),

ϵ ¼ b2

2
e2½InvErf (

ffiffiffiffiffiffiffiffi
ð2=πÞ

p
ðIϕ=MPlÞ)�2 ; ð39Þ

η ¼ b

�
b −

ffiffiffi
2

p
InvErf

� ffiffiffi
2

π

r
Iϕ

MPl

��
e2½InvErf(

ffiffiffiffiffiffiffiffi
ð2=πÞ

p
ðIϕ=MPlÞ)�2 ;

ð40Þ

we find that for 0 < b ≪ 1 this atypical model yields a
sufficiently long inflationary era with properties allowed by
the latest measurements of r and ns at a confidence level of
about 95%.
This basic example proves that inflationary models

specified by elementary functions that supposedly arise
from fundamental physics can lead to invariant potentials
given in terms of special functions. The proposed formal-
ism is suited to study such atypical scenarios, the phe-
nomenology of which lies outside the boundaries of the
current compendia like Ref. [7].
Conclusions.—The main objective of the present Letter

was to identify the origin of the redundancy in the current
description of inflation and propose an alternative and
clearer categorization of the viable inflationary scenarios.
To this purpose, by adopting a formalism in which

slow-roll parameters and inflationary observables can be
expressed in a frame and parametrization invariant fashion,
we demonstrated that the phenomenology of every inflation
model is solely regulated by the so-called invariant

TABLE II. The second class of inflationary models we identify encompasses the α-β model (M1), the E-type α attractors (M2), and
special ξ attractors (M3).

A B V σ Im IV Iϕ

M1 1 1 M4½1 − e−
ffiffiffiffiffiffiffiffiffiffi
ð2=3αÞ

p
ðΦ=MPlÞ�2 0 1 M4½1 − e−

ffiffiffiffiffiffiffiffiffiffi
ð2=3αÞ

p
ðΦ=MPlÞ�2 Φ

M2 1 ð3α=2ÞðM2
Pl=Φ2Þ M4½1 − ðΦ=MPlÞ�2 0 1 M4½1 − ðΦ=MPlÞ�2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið3α=2Þp
MPl lnðΦ=MPlÞ

M3 ðM2
Pl þ ξΦ2Þ=M2

Pl ξΦ2=ðM2
Pl þ ξΦ2Þ λξ2Φ4 0 M2

Pl=ðM2
Pl þ ξΦ2Þ λξ2M4

PlΦ4=ðM2
Pl þ ξΦ2Þ2 ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξð1þ 6ξÞp
=2ξ�MPl ln ½1þ ðξΦ2=M2

PlÞ�
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potential. As a result, it is obvious that models charac-
terized by identical invariant potentials lead to the same
physical consequences, in spite of the different starting
Lagrangians.
After detailing how to recast a general model of inflation

in the proposed formalism, we exemplified the procedure in
the case of the Higgs inflation. With the invariant formalism
at hand, we then demonstrated the physical equivalence of
different inflationary scenarios proposed in the literature,
posing the basis for the sought categorization of viable
inflation models and for a better understanding of the
connected dynamics.
In this regard, we proved that the standard quadratic

inflation model and the more recent induced Coleman-
Weinberg scenario give rise to twin phenomenologies
delineating a first class of equivalent theories. Likewise,
we showed that α-βmodels, E-type α attractors, and special
ξ attractors fall into a second equivalence class.
On top of that, we showed how the proposed formalism

can be employed to study the phenomenology of viable
inflationary models encoded in an invariant potential
specified by special functions. These scenarios lie outside
of the boundaries of the current categorization of infla-
tionary frameworks and, therefore, represent a new possible
direction of model building.
It is our hope that the methodology proposed in this

Letter will become the new language for the characteriza-
tion of viable inflationary scenarios, paving the way toward
a deeper understanding of the dynamics of inflation itself.
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