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Can collective quantum effects make a difference in a meaningful thermodynamic operation? Focusing
on energy storage and batteries, we demonstrate that quantum mechanics can lead to an enhancement in the
amount of work deposited per unit time, i.e., the charging power, when N batteries are charged collectively.
We first derive analytic upper bounds for the collective quantum advantage in charging power for two
choices of constraints on the charging Hamiltonian. We then demonstrate that even in the absence of
quantum entanglement this advantage can be extensive. For our main result, we provide an upper bound to
the achievable quantum advantage when the interaction order is restricted; i.e., at most k batteries are
interacting. This constitutes a fundamental limit on the advantage offered by quantum technologies over
their classical counterparts.
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Introduction.—Technology is currently being miniatur-
ized at such a rate that we must give serious thought to the
fundamental laws and blueprints of the machines of the
future. In the microscopic domain, where these machines
are expected to function, fluctuations of both thermal
and quantum nature begin to proliferate, and quantum
effects must be included in any reasonable physical
description. When we deal with technologies working in
this quantum regime, familiar thermodynamic concepts
like work, heat, and entropy need to be applied with great
care and consideration. It comes as no surprise that there
has been a recent intense effort to understand how the laws
of thermodynamics generalize to arbitrary quantum sys-
tems away from equilibrium. This effort is known as
quantum thermodynamics and, given current interest in
the development of quantum technologies, it is receiving a
great deal of attention across a wide range of scientific
communities [1–3].
Despite current momentum in the field of quantum

thermodynamics, the explicit role of genuinely quantum
features in the operation of thermal machines is not fully
understood. A common issue raised is that the universal
applicability of thermodynamics is rooted in the theory’s
complete lack of respect for microscopic details. So, why
then should thermodynamics really care about quantum
mechanics? For example, the striking feature of Carnot’s
bound for the efficiency of a heat engine lies in the fact that
it is insensitive to microscopic details [4]. Nevertheless, if
one relaxes the assumptions of large system size and
quasistatic conditions, it is absolutely reasonable to get
corrections based on the fine details of the working medium

[5–8]. An important question is, then, can such quantum
features be harnessed to improve other thermodynamically
meaningful figures of merit, such as power?
Collective quantum phenomena are known to offer

advantages in areas such as computation, secure commu-
nication, and metrology. Very recently, these possible
advantages have received some attention in the context of
batteries [9–17]. The issue is subtle, in particular when
one deals with mixed states. In particular, Alicki and
Fannes suggested that entangling operations lead to
increased work extraction from an energy storage device
which they coined a “quantum battery” [9]. Nonetheless,
while entangling operations are necessary for optimal
work extraction, it has been shown that protocols exist for
which no entanglement is actually created during optimal
work extraction [10,11]. Furthermore, considering a
regime where entangling operations do not increase the
extractable energy, some of the authors of the present
work recently showed that entangling operations can,
nonetheless, enhance the charging power of collections of
two level quantum batteries [15], also see [18]. However,
the demonstration was reliant on a highly nonlocal
Hamiltonian, which may be difficult to implement in
practice.
In this Letter, we first formally define the collective

quantum advantage for thermodynamic power, before
deriving its ultimate upper bound. Next, we show that
attaining a quantum advantage requires entangling oper-
ations, but not entanglement itself. We then go on to
analytically prove that, for charging fields with finite
interaction order, i.e., involving at most k-body interaction
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terms, the quantum advantage is upper bounded by a
quadratic function of k and cannot scale with the total
number of batteries. Our result is a fundamental limit on
how large power can be for physically realizable charging
schemes, where the achievable interaction order is typically
constrained.
Quantum batteries.—We begin by defining what we

mean by a quantum battery: Consider a quantum system
with an internal Hamiltonian I. Such a system can be used
to store work by manipulating an external control field
VðtÞ over some time interval t ∈ ð0; TÞ. This generates

the unitary dynamics U ¼ ~T expf−i R T
0 dtHðtÞg, where

HðtÞ ¼ I þ VðtÞ and ~T is the time ordering operator (we
set ℏ ¼ 1). Note that VðtÞ vanishes outside the time interval
ð0; TÞ. During the charging process, the system is taken
from an initial state ρ to a higher energy final state σ ¼
UρU† in a time T. Since the evolution is unitary, there is no
heat generated [19], and the work deposited onto the
system is given by W ¼ tr½Iðσ − ρÞ� with an average
charging power given by P ¼ W=T.
Now, consider N such batteries, whose joint initial state

is ρ⊗N . As before, we can deposit work on all of them by
transforming ρ⊗N into σ⊗N . One way to implement this
transformation is to perform the charging in parallel,
following exactly the procedure described above for each
battery independently. In this case, the unitary transforma-
tion is simplyU⊗N, and the time taken to charge N batteries
is equal to the single battery charging time: T∥ ¼ T. Since
the deposited work scales extensively, W∥ ¼ NW, leading
to a charging power P∥ ¼ NP that grows linearly with the
number of batteries.
Alternatively, to deposit work onto an array of N

batteries we could apply a more general unitary trans-
formation U, generated by the time-dependent N-battery
Hamiltonian HðtÞ ¼ P

N
j¼1 I

ðjÞ þ VðtÞ. Here, IðjÞ is the
internal Hamiltonian for the jth battery, and we require
that VðtÞ vanishes outside the time interval ð0; T♯Þ. A bold
font here denotes many-body operators. Henceforth, time
dependence will be left implicit where it is unambiguous.
The crucial difference between U⊗N and U is that V may
contain terms corresponding to interactions between
batteries—i.e., the batteries are charged collectively.
In this case the collective state of N batteries ρ may
become entangled. As before, we require that the system
is transformed from state ρ⊗N to state σ⊗N via a cyclical
operation; this ensures that the deposited work is the
same as in the parallel case, i.e., W♯ ¼ NW ¼ W∥.
However, the joint time-evolved state ρ in this case
may be entangled, and the time taken to implement U
and U could in principle be different, with T♯ ≤ T∥ in the
optimal case. This in turn leads to different charging
powers: P♯ ≥ P∥.
Quantum advantage.—We are now in a position to

define the quantum advantage for collective charging as

Γ ≔
P♯

P∥
¼ T∥

T♯
; ð1Þ

where the second equality is a consequence of our require-
ment that the work done is independent of the charging
method. Here, “quantum” refers specifically to an enhance-
ment over charging with the best local (i.e., nonentangling)
operations. That is, to compute the quantum advantage we
must take the optimal values for P∥ (P♯) for given ρ (ρ⊗N)
and σ (σ⊗N).
In order for this advantage to be meaningful, we must

ensure that the parallel and collective charging strategies
are fairly compared. In particular, we would like to isolate
the advantage due to collective quantum effects without
worrying about other consequences of introducing inter-
actions between batteries, such as the increased energy
available to drive transitions. In order to take this extra
energy into account, we must constrain the collective
Hamiltonian H to be similar to

P
jH

ðjÞ, the total
Hamiltonian in the parallel charging case. Without con-
straints, we could freely increase the total energy of the
collective charging Hamiltonian to achieve faster driving,
making the advantage arbitrarily large. Noting that the
variance and mean energy are extensive quantities for
noninteracting systems, we consider two possible con-
straints on H, namely:
(C1) The time-averaged standard deviation in energy

during the collective evolution for time T♯ should not
exceed

ffiffiffiffi
N

p
times that of a single battery, i.e., ΔE♯ ≤ffiffiffiffi

N
p

ΔE with

ΔE♯ ≔
Z

T♯

0

dt
ΔHρ

T♯
; ΔE ≔

Z
T∥

0

dt
ΔHρ

T∥
; ð2Þ

where ðΔXyÞ2 ≔ hðX − hXiyÞ2iy and hXiy ¼ tr½Xy�.
(C2) The time-averaged energy during the collective

evolution for time T♯ should not exceed N times that of a
single battery, i.e., E♯ ≤ NE with

E♯ ≔
Z

T♯

0

dt
hH − hgiρ

T♯
; E ≔

Z
T∥

0

dt
hH − hgiρ

T∥
; ð3Þ

where hg (hg) is the instantaneous ground state energy of
H (H), that can also depend on time.
We are free to choose either of these rescalings as a

constraint on H. They represent alternative ways of
accounting for the differing energetic structure of the
parallel and collective charging Hamiltonians. The choices
of C1 and C2 are additionally motivated by the form of the
quantum speed limit (see below). While C1 leads to a
stricter upper bound on the quantum advantage, there is no
reason a priori to choose one over the other. We are now
ready to derive our first main result.
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Upper bound.—Since the quantum advantage defined
in Eq. (1) amounts to a ratio of transition times, we can
use the quantum speed limit (QSL) to upper bound it
for a given constraint. The QSL states that the time
required to transform ρ⊗N into σ⊗N is lower bounded

as T♯ ≥ TðNÞ
QSL ≔ LN max ð1=E♯; 1=ΔE♯Þ, where Lm ≔

arccosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F½ρ⊗m; σ⊗m

p
�Þ is the Bures angle and Fðρ; σÞ ≔

tr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp �2 is the Uhlmann fidelity [20]. The two
constraints, C1 and C2, are clearly related to the QSL,
as ΔE♯ and E♯ can be computed using Eqs. (2) and (3),
respectively. If we could change the Hamiltonian at will to
include arbitrary interaction terms, and only concern
ourselves with the state transformation, we could replace
H with a time-independent Hamiltonian such that the initial
state traverses the great circle connecting ρ⊗N and σ⊗N in
the N-partite state space [21–23]. In the absence of further
constraints, the evolution with such time-independent
Hamiltonians is in fact optimal. In this case, the QSL
reduces to the usual inequalities due to Mandelstam-Tamm
[24] andMargolus-Levitin [25], where E♯ is replaced by the
average initial energy and ΔE♯ is replaced by the average
initial standard deviation.
To derive the upper bound, we first confine ourselves to

constraint C1. We proceed by noting that the quantum
speed limit for collectively charging N quantum batteries is
given by T♯ ≥ LN=ΔE♯. This means that Γ ≤ T∥ΔE♯=LN .
Now, using constraint C1, i.e., ΔE♯ ≤

ffiffiffiffi
N

p
ΔE, we get

Γ ≤ T∥
ffiffiffiffi
N

p
ΔE=LN . A similar argument can be made with

constraint (C2). Taking into account that the speed limit for
parallel charging is not always attainable, we arrive at the
following upper bounds for the quantum advantage:

ΓC1 ≤ β
ffiffiffiffi
N

p L1

LN
and ΓC2 ≤ βN

L1

LN
; ð4Þ

for constraints (C1) and (C2), respectively, where β ≔
T∥=T

ð1Þ
QSL quantifies the inability to saturate the QSL in the

parallel case.
Two remarks are in order. Firstly, for orthogonal pure

initial and final states, the QSL can be saturated and β ¼ 1.
Though the quantum advantage for power could be larger in
other cases, including where the battery states are mixed
[26], the improvement cannot grow with the number of
batteries; i.e., β is a constant function ofN. Second, we have
excluded cases where ρ and σ do not lie on the same unitary
orbit, as there is no way of transforming the former into the
latter using the scheme outlined above; the two states will
therefore necessarily have the same spectrum [27].
The two bounds in Eq. (4) are independent from each

other, and constraint C1 is stronger than C2, as it leads to a
stricter bound on the quantum advantage. Many other
bounds can be derived by considering other extensive
constraints. The quantum advantage is tight for orthogonal
initial and final states, due to the example given in Ref. [15].

The significance of entanglement for quantum enhance-
ment has previously been studied in the context of quantum
speed limits for pure states: it was shown that, for non-
interacting systems, initial entanglement is required for an
enhancement in the speed of evolution [28,29], while for
interacting systems a speedup may be achieved for initially
separable states, since intermediate entangled states are
accessible [30–32]. In the more general case of mixed states,
the necessity of entanglement for an enhancementmay not be
directly inferred, though it has been argued that, in general,
larger quantumFisher information of the statewith respect to
the generator of evolution leads to enhanced speed [33,34].
In fact, as we now show, entanglement does not appear to
be necessary for a nontrivial quantum advantage.
Proposition 1.—An extensive quantum advantage can be

attained even for highly mixed states, including those
confined to the separable ball throughout the charging
procedure.
We prove this with an explicit example: Consider N two-

level batteries with internal Hamiltonian I with eigenstates
jE1i and jE0i, and corresponding energies E1 ¼ 1 and
E0 ¼ 0. Let the initial state be thermal: ρ ¼ expð−ϵIÞ=Z at
inverse temperature ϵ with Z ¼ tr½expð−ϵIÞ�, and the final
state be σ ¼ expðϵIÞ=Z. The optimal local charging
scheme is achieved in time T∥ ¼ π=2 by applying
Hamiltonian H ¼ jE0ihE1j þ jE1ihE0j to each battery. In
contrast, the joint charging of N batteries is achieved in
T♯ ¼ T∥=α♯ using the global Hamiltonian H♯ ¼ α♯H⊗N ,
where the positive constant α♯ is introduced to satisfy the
chosen constraint.
In both cases (local and global) the deposited work is

identical; thus, the quantum advantage is simply the ratio of
T∥ to T♯: Γ ¼ α♯, which can be evaluated for the choice of
constraint. We find ΓC1 ¼

ffiffiffiffi
N

p
and ΓC2 ¼ N [also ΓC0 ¼ N

for C0 given in Eq. (5)].
ForN quantumsystemsofd dimensions, there exists a ball

of radius RðN; dÞ, centered on the maximally mixed state,
containing only separable states [35]. Since the distance from
the maximally mixed state cannot change under unitary
evolution, for a small enough choice of ϵ, the joint state ofN
batteries will lie within this ball throughout the evolution;
yet, the quantum advantage remains extensive. ▪
Remarkably, neither T∥ nor T♯ depend on ϵ, while the

total work done does. In other words, no matter how mixed
the battery is, a quantum advantage that scales with the
number of batteries involved is always achievable. The
trade-off of using highly mixed states is that the charging
power suffers as ϵ becomes smaller and smaller.
Proposition 1 implies that, while a quantum advantage
requires entangling operations, the joint state of N batteries
does not have to be entangled during the charging process.
The Hamiltonian used in the example above, and in

Ref. [15], to saturate the bound for quantum advantage
involves N-body interactions. Such interactions are noto-
riously difficult to engineer. In the next section, we consider
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physically realizable interactions, and study the depend-
ence of the enhancement on the order of the charging
interaction, i.e., the number of batteries that take part in a
single interaction term.
k-local charging.—We now investigate the achievability

of a significant quantum advantage in a regime where
arbitrary multipartite entanglement generation is possible
during the charging process. In particular, we demonstrate
that, although a nontrivial quantum advantage is achievable
in physical systems characterized by at most k-body
interactions, this advantage—upper bounded by a quantity
that depends at most quadratically on k—cannot scale with
the number N of batteries that compose the system.
First, we consider the situation where work is deposited

onto the battery by means of a piecewise unitary circuit, an
example of which is depicted in Fig. 1 in the Supplemental
Material [39]. This model is reminiscent of the circuit
model of universal quantum computation, which is known
to outperform its classical counterpart. In this case, the
collective state of N batteries will, in general, be highly
entangled. This scheme allows us to study how the
quantum advantage is related to the number of batteries
that are simultaneously interacting.
We consider batteries composed of N d-level systems,

with internal Hamiltonian I ¼ P
jI

ðjÞ, as before. More
explicitly, and without loss of generality, we assume that
each term is given by IðjÞ ¼ P

d
l¼1 λljlijhljj with λd − λ1 ¼

2λd > 0, and with eigenvalues arranged in increasing order.
The time interval ½0; T♯� is divided up into L steps: at each
step the Hamiltonian is the sum of s ¼ ⌈N=k⌉ terms, each
acting on a different set of k batteries. In order to allow
the formation of highly entangled states, these partitions
could be different at each step. At any time t, the k-local
Hamiltonian can be written as H ¼ P

s
μ¼1 hμ, where each

term hμ acts on a different k partition of the Hilbert space,
identified by the set μ ¼ ðμ1;…; μkÞ of k indices.
In order to make a meaningful statement in this scenario,

we need to introduce a third constraint: (C0) The time-
averaged operator norm of the driving Hamiltonian H
during the collective evolution for time T♯ should not
exceedN times that of a single battery driving Hamiltonian,
i.e., E♯ ≤ NE with

E♯ ≔
1

T♯

Z
T♯

0

dt∥H∥op and E≔
1

T∥

Z
T∥

0

dt∥H∥op; ð5Þ

where the operator norm ∥A∥op is defined as the largest
singular value of A.
Constraint C0 guarantees that both the time-averaged

standard deviation and the time-averaged energy are
bounded from above, as shown in Sec. I of the
Supplemental Material [39]. There, we show that E♯ upper
bounds both E♯=2 and ΔE♯. In this sense, it is a stricter
constraint than C1 or C2.

We now show that, with this constraint, the upper bound
on thequantumadvantagedepends on the interactionorderk:
Theorem 1.—For a circuit based charging procedure

with interaction order of at most k, the achievable quantum
advantage is upper bounded as ΓC0 < γk, where γ is a
constant that does not scale with the number N of batteries.
The proof is in Sec. II of the Supplemental Material [39].

In the important case where ρ and σ are the ground and
maximally excited states, respectively, γ ¼ π=2. By con-
struction, the bound on the quantum advantage is not tight.
For comparison, it has been shown elsewhere that ΓC1 ¼ffiffiffi
k

p
and ΓC2 ¼ k are achievable if the total number of

batteries N can be divided by k, i.e., if N=k ¼ s ∈ N
[15,40]. In this particular case, such a speedup can be
obtained for pure states using the time-independent
Hamiltonian H ¼ ffiffiffi

s
p P

s
μ¼1 hμ, with hμ ¼ j1i⊗khdj⊗kþ

H:c:, assuming that each hμ acts on a completely different
set of k batteries, i.e., ½hμ; hμ0 � ¼ 0∀μ, μ0. In the same
situation, using constraint C0 we obtain ΓC0 ¼ k, sug-
gesting that the strict inequality in Theorem 1 is only
different by a constant factor from an achievable bound.
Theorem 1 can be extended to more general cases, where

k-body time-dependent interactions can occur between
overlapping sets of batteries, with the restriction that each
battery is simultaneously interacting with at most m others.
This restriction is motivated by the idea that the reach of the
interaction should be limited.
Theorem 2.—For a generic time-dependent charging

procedure, the achievable quantum advantage is upper
bounded as ΓC0 < γ½k2ðm − 1Þ þ k�, where k is the inter-
action order and m is the maximum participation number.
The proof is given in Sec. III of the Supplemental

Material [39]; it makes use of the Suzuki-Trotter formula
[41] and Theorem 1. For many physical systems, both k and
m are limited: 2- or 3-body interactions are the norm for
fundamental processes, and higher interaction orders are
generally hard to engineer here [42–44]. The effective
participation number, or reach, m tends to be constrained
by the spatial arrangement of systems and the fact that
interaction strength often drops off with distance.
Exceptions to this include the Dicke model [45], where
collective coherence leads to superradiance, the Lipkin-
Meshkov-Glick model [46], where all particles interact
with each other, and the Mølmer-Sørensen interaction [47],
in which an ensemble of ions is effectively coupled by a
spatially uniform electromagnetic field.
Note that these bounds are not tight; while a scaling of

the power P♯ with the number of batteries N is surely not
feasible in the context of k-body interactions, it is more
likely that the quantum advantage is tightly limited by k. In
fact, we conjecture that, for any choice ofH, a conservative
bound for the quantum advantage is given by ΓC0 < γk:
Conjecture 1.—Theorem 2 holds for any time-dependent
k-body interaction Hamiltonian.
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We examine this particular statement in Sec. IV of the
Supplemental Material [39], anticipating that the result
holds if a particular mathematical conjecture does too.
While we cannot exclude measure zero cases, a large
sample of charging Hamiltonians (generated from Haar-
random unitary operations), with ðN; kÞ ¼ ð3; 2Þ, (4,2),
(4,3), and (6,2) has failed to produce any counterexamples.
We believe that similar conjectures should also hold for
constraints C1 and C2.
Conclusions.—In this Letter, we have introduced the

notion of the collective quantum advantage for thermody-
namic power. Our results directly complement a previous
strain of research into quantum speed limits, by deriving a
concrete upper bound on the ratio between the maximum
speed of interacting and noninteracting driving between
separable states. We have proven two fundamental upper
bounds for the quantum advantage, each corresponding to a
different constraint on the charging Hamiltonian. We have
also shown analytically that a quantum advantage that grows
with the number of batteries is not achievable with any
physically reasonable Hamiltonian (i.e., one with at most
k-body interactions). Nevertheless, a quantum advantage
that grows with the interaction order k can be achieved.
The quantum advantage has been interpreted as the result

of rapid evolution through the space of high-dimensional
quantum states, typically obtained by means of global
operations [15]. While, in the case of pure states, entan-
glement is a necessary consequence of these global
operations, a fully separable evolution is still accessible
for those states that live in the separable ball.
A striking consequence of our results, which hold in

general for mixed states, is that an enhanced charging
power is available even for arbitrarily mixed states, in
remarkable analogy to the case of quantum metrology.
There, an enhancement in sensing is still available for
highly mixed states lying inside the separable ball [48].
While collective behavior has been demonstrated to

provide an advantage in performing many information
theoretic tasks, such distinctions from classical behavior
are few and far between in thermodynamics. This Letter
demonstrates that thermodynamic processes can indeed
benefit from collective effects when time enters the picture,
though physical limitations on the interaction order prevent
us from utilizing them. This result has fundamental
importance for our understanding of how quantum theory
and thermodynamics are related.
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