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Direct Observation of Percolation in the Yielding Transition of Colloidal Glasses
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When strained beyond the linear regime, soft colloidal glasses yield to steady-state plastic flow in a way
that is similar to the deformation of conventional amorphous solids. Because of the much larger size of the
colloidal particles with respect to the atoms comprising an amorphous solid, colloidal glasses allow us to
obtain microscopic insight into the nature of the yielding transition, as we illustrate here combining
experiments, atomistic simulations, and mesoscopic modeling. Our results unanimously show growing
clusters of nonaffine deformation percolating at yielding. In agreement with percolation theory, the
spanning cluster is fractal with a fractal dimension d; =2, and the correlation length diverges upon
approaching the critical yield strain. These results indicate that percolation of highly nonaffine particles is
the hallmark of the yielding transition in disordered glassy systems.
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Soft materials like colloidal suspensions, foams, and
concentrated emulsions exhibit linear elastic behavior
under applied strain up to a critical strain beyond which
the response becomes nonlinear, indicating the onset of
plastic flow [1]. The microscopic origin of yielding lies in
the irreversible plastic rearrangements that occur at the
particle level [2,3]. Whereas in crystals plastic deformation
occurs via the motion of topological defects [4], in
amorphous materials plasticity is associated with irrevers-
ible rearrangements of localized and highly strained zones
[3,5,6]. Although rheological studies of soft glassy materi-
als have allowed for an extensive investigation of yielding
and plastic flow at the macro scale [2], their microscopic
origin is still strongly debated [7-9]. Microscopic experi-
ments so far have largely investigated particle dynamics in
the steady-state regime [3,10,11], where plastic events are
correlated by long-range quadrupolar strain fields [10].
Such irreversible rearrangements are also observed in
quiescent glasses or at small strain in the transient stages
of deformation [7,12]. What remains unclear is how these
rearrangements grow and organize with increasing strain
[13—15]. Recent modeling [14] and simulation work [15]
suggests that percolation of plastic zones governs the
yielding and flow of glasses; experimental insight into
this behavior, however, while of fundamental importance
for both theory and applications, remains elusive.

Theoretical models and simulations investigating ava-
lanche dynamics in sheared athermal amorphous solids
have focused on power-law scaling and critical behavior
close to the yield point [16-22]. How far such a scaling
description is valid at finite shear rates and finite
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temperatures is, however, a topic of active research [20].
Experimental investigations in this direction are scarce.
Recent oscillatory shear measurements of concentrated
emulsions and colloidal glasses [7] have extended the
ideas of reversible to irreversible transition (absorbing
phase transition) to yielding of soft materials. These
microscopic studies, which are mainly quasi-two-dimen-
sional, show that in contrast to macroscopic measurements,
the microscopic signatures of yielding are indeed sharp.

In this Letter, we complement confocal microscopy
experiments on three-dimensional hard-sphere colloidal
glasses with atomistic simulations of metallic glasses
and mesoscopic modeling, to elucidate the microscopic
dynamics in the transient state across yielding. We find that
highly nonaffine particles form clusters that grow with
strain to eventually, at a critical strain of about 10%,
percolate across the sample. These clusters have a fractal
dimension close to 2 that remains constant with strain.
Their size, as measured by the correlation length of
nonaffine particles, diverges upon approaching the critical
strain, indicating scale-free structures. We find that the
general picture is surprisingly robust across all systems
studied, independent of the microscopic detail of the
material, indicating that this percolation picture of yielding
is much more general and applies to amorphous materials
beyond colloidal glasses. However, we also find that the
exponent v governing finite-size scaling of the percolation
transition is not universal, taking different values for
particle-based and mesoscale models.

We use hard-sphere colloidal suspensions that are good
model systems for glasses; structural relaxations slow down
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at particle volume fractions larger than ¢ ~ 0.58, the
colloidal glass transition [23]. Our sterically stabilized
fluorescent polymethylmethacrylate (PMMA) particles
have a diameter of ¢ = 1.3 ym, with a polydispersity of
7% to prevent crystallization, and are suspended in a
density and refractive-index matching mixture of cyclo-
heptyl bromide and cis-decalin. The particle volume
fraction is ¢ ~0.60 as estimated from the centrifuged
sediment, and we measured a structural relaxation time
of 7~2 x 10* s by microscopy, which is a factor of 5 x
10* larger than the Browning time 75 = 0.4 s. To inves-
tigate the transient deformation, we started from an
equilibrated state (rejuvenation and subsequent relaxation
for three hours) and applied uniform, slow shear at constant
rate 7 = 107* s7!, of the order of the inverse structural
relaxation time. Confocal microscopy is used to image
~2.5 x 10° particles in a 107 x 107 x 65 um volume, and
to follow their positions in three dimensions with an
accuracy of 0.03 ym in the horizontal, and 0.05 ym in
the vertical direction [24]. Individual particles are tracked
during a 30 min time interval from image stacks taken every
35 s, hence, the experimental time increment ot = 35 s.

We perform molecular dynamics simulations of the
compression of CuZr metallic glass using the embedded
atom method (EAM) [25], as described in Ref. [26].
Simulations are performed using the LAMMPS simulator
package [27], with GPU parallelization [28-30]. The
sample is prepared starting from a Cu fcc single crystal
with a lattice constant A= 0.3610 nm enclosed in a
simulation box with periodic boundary conditions. The
alloy is generated by first transforming approximately 40%
of Cu atoms into Zr and then performing a heat treatment
[31,32] at 2300 K for 20 ps, followed by rapid quench to
10 K in 200 ps, and final relaxation at 10 K for another
20 ps. The relaxed system is compressed along z at a
constant strain rate 2 x 103 s7!, at 7 = 10 K. We confirm
the results are qualitatively robust upon varying the strain
rate [33]. Temperature and pressure are controlled using a
standard Nosé-Hoover thermostat and a barostat [42-45],
with a characteristic relaxation time of 1 ps. The barostat
ensures that the xx and yy components of the stress tensor
are close to zero.

We also simulate a fully tensorial mesoscale elastoplastic
model, similar to other models commonly employed
to study yielding in amorphous media [16,17,19-22], on
a 3D cubic lattice of linear size L =8, 16, 32, 64.
Each lattice site represents an Eshelby inclusion [46] of
vanishing volume and strain €. The stress on each site is
the sum of uniform externally applied stress ' and
internal stress 6™, which is given in Fourier space by
o-ii‘}‘ (q) = Gijii(q)€wn(q), where G is Eshelby’s Green func-
tion [46], subscripts refer to components x, y, and z and
Einstein summation is assumed. A site yields according to
the Von Mises yield criterion on the deviatoric stress:
[(Boiv6ev) /2]!/2 > 6. The yield thresholds o are drawn

for each site from a uniform distribution over [0, 1], and a
site’s yield threshold is redrawn upon yield. The external
stress is increased adiabatically slowly and is held constant
during avalanches, as described previously [19].

In experiments and atomistic simulations, we determine
nonaffine displacements of particles from the affine
transformation of nearest-neighbor vectors over time, as
described previously [6]. The symmetric part of the affine
transformation tensor is the local strain; the remaining
nonaffine component D,, has been used as a measure of
plastic deformation [6,10,47]. We focus on particles with
large nonaffine displacements and define a particle as
“active,” if its nonaffine component Di, > (D,,), where
angular brackets denote the average of all particles in the
system. In mesoscale simulations, active sites are just the
sites where plastic slip takes place.

Reconstructions of the colloidal glass reveal active
particles cluster in space, and the clusters grow with applied
strain, as shown in Figs. 1(a)-1(c). With increasing strain
these “fluidlike” clusters expand and grow in size and new
clusters appear in the field of view. Subsequently, the
adjacent clusters start merging and at around a critical strain
7. ~ 0.1 a single largest cluster dominates the entire field of
view. We plot the fraction p of active particles as a function
of strain in Fig. 1(d) (blue diamonds). While initially p
barely changes indicating elasticlike response, with
increasing strain p increases steeply and eventually reaches
a steady state at higher strain. Very similar behavior is
observed in the simulations: clusters of active particles
grow in space, and the fraction of active particles increases
steeply and eventual saturates [Fig. 1(d), pink symbols].
Snapshots show clusters of active particles in the later
stages of the atomistic and mesoscale simulations in
Figs. 1(e) and 1(f).

We highlight the growth of the largest cluster by
following the number of particles S in the clusters as a
function of strain. Figure 2(a) shows the evolution of the
largest and second largest cluster. Both increase initially
with strain, but at some critical strain y,. the largest cluster
takes over: the second largest cluster stops growing and
shrinks, while the largest cluster continues to grow, until its
size eventually saturates. We use the crossover strain y, to
define the microscopic yielding transition of the material.
This critical strain is approximately 9%—10% in our
colloidal glass, comparing well with the macroscopic
yielding transition in rheological studies of hard-sphere
glasses [8,33,48], where yield strains of around 10% are
found for ¢ ~0.60. A remarkably similar scenario is
observed in the simulations, both atomistic and meso-
scopic. Both cluster sizes initially increase, while at a
critical strain, the largest cluster takes over, and the second
largest cluster shrinks. This largest cluster tends to span
the entire field of view, as shown for the experiments in
Fig. 2(a) inset, where we plot the occurrence of percolation
as a function of strain.
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Observation of the microscopic yielding transition. (a)—(c) Evolution of highly nonaffine clusters in experiments at strains 2.1,

4.9, and 10.1%. (d) Evolution of fraction p normalized by the maximum fraction p,., of active sites with strain in experiments
(diamonds), atomistic simulations (pink circles), and mesoscale simulations (green circles). (e) Clusters of highly nonaffine particles in
atomistic simulation at 2% strain. (f) Clusters of active sites in mesoscale simulations at 40% strain.

We find that the clusters have fractal shape. To show
this we compute the cluster radius of gyration Rg =
1/2[37,;(ri = r;)?/8%] [49], as a function of cluster size
S, which we plot in Fig. 3. The radius of gyration scales
with cluster size S as R, ~ S'/¢ with d; ~ 2, indicating that
the clusters have a fractal dimension dy ~ 2. We find that
this scaling is robust and independent of the applied strain.
This fractal structure is in line with the hierarchical
organization of plasticity observed in the steady-state flow
after yielding [10], and indicates a near-critical state of
the system.

FIG. 2. Percolation of largest active cluster. Normalized size of
the largest and second-largest nonaffine cluster as a function of
strain for experiments (a), atomistic simulations (b), and meso-
scale simulations (c). In all cases, the largest cluster grows with
strain to a plateau, while the second largest cluster decays after
some critical strain. The transition defines the critical strain ..
Inset in (a) shows percolation of largest cluster (P = 1) versus
strain in experiment.

To investigate the growth of fractal clusters upon
approaching y., we compute the characteristic length scale
of nonaffine regions. We determine the correlation length of
clusters of nonaffine particles using & = 2)7,R2,57/ .S,
where R; is the radius of gyration for cluster size S; [49].
This correlation length increases with the increasing
fraction p of active particles and diverges near a critical
fraction p.~0.16, at the critical strain y., as shown in
Fig. 4(a). Around this strain, we measure a correlation
length of &~ 32 ym, of the order of the thickness of
the sheared colloidal layer of ~50 pym. This growth of
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FIG. 3. Fractal cluster structure. Scaling of the radius of

gyration R, with size § of highly nonaffine clusters in experi-
ments (triangles) and mesoscale simulations (dots) at various
strain values. The exponent 1/2 indicates a cluster fractal
dimension of 2.
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FIG. 4. Cluster divergence and percolation (a) Cluster correlation length & as a function of fraction p of active colloidal particles. Inset:
Scaling of & with distance from the critical fraction p,. ~ 0.16. The correlation length diverges according to &~ (p. — p)™ with
v~ 0.75. (b) Fraction f, of particles in the largest cluster as a function of the total fraction of active particles. For the colloidal glass, the
critical fraction where the transition from nonpercolated to a percolated state happens is again p. =~ 0.16(f, = 1/2). (c) Finite-size
scaling collapse of the mean cluster size in atomistic simulations. Inset: probability Py, of finding a spanning cluster as a function of
rescaled distance p. — p. The critical fraction p, = 0.113 £ 0.001 and exponent v = v; = 0.85 £ 0.1 are obtained through a joint fit
over data sets for system sizes L = 12, 18, and 22 nm of the probability Py, (p) of finding a spanning cluster, using the size-dependent
sigmoid 1/{1 + exp[—k(p — p.)L'/*]}¢, as shown in the inset. Here k = 3.9 + 1.3 and a@ = 0.82 + 0.07 are sigmoid shape parameters,
and all fitted parameters are shared between all data sets. (d) Similar collapse for mesoscale simulations where the fit yields

v=uv,=2.140.03.

correlation length is in line with the growing correlation
time scale observed in oscillatory yielding experiments [7].
Furthermore, by plotting the correlation length as a
function of the distance p.— p to the critical fraction
[Fig. 4(a), inset], we find that the correlation length grows
with a power law &~ (p. — p)™ upon approaching the
critical fraction p.. Here, v ~ 0.75. This exponent appears
close to that predicted for percolation in three-dimensional
continuum percolation models [49,50].

The emerging picture is thus that regions of highly
nonaffine, fluidlike particles grow and eventually, at the
yielding transition, percolate across the sample. To test this
idea in more detail, we apply concepts from percolation
theory and follow the size of the largest cluster as a function
of the total number of active particles. We plot the fraction
f, of particles in the largest cluster as a function of the
total fraction of active particles in Fig. 4(b). This fraction
increases sharply at p., indicating that the largest cluster
abruptly takes over and absorbs all active particles. This
scenario is indeed characteristic for percolation: the fluid-
like particles that percolate at yielding produce a fluidized
network that sustains the steady-state flow after yielding.
The critical fraction of highly active particles is p. ~ 0.16
at f, = 0.5, i.e., approximately 16% of the total number of
particles. The corresponding critical strain is again y.~
9-10%, in good agreement with reported yield strains of
colloidal glasses. We, hence, find that the microscopic
origin of yielding is the percolation of highly nonaffine
particle clusters, producing a fluidlike network in a solid
matrix.

Our simulations allow us to study the transition at p,
in greater detail, by performing a finite-size scaling

collapse of the mean cluster size S as a function of
active particle fraction p, using the standard percolation
rescaling p — (p — p.)L'/*. Figure 4(c) shows the results
for atomistic simulations, where p,. = 0.113 £+ 0.001 and
exponent v = 0.85+0.1. This exponent agrees very
well with the expected value for percolation in three
dimensions of v = 0.88 [49,50]. Similarly, our mesoscale
simulations also show a percolationlike transition at
p. = 0.085 £ 0.005, but with exponent v = 2.1 +0.03,
as shown by the excellent fits of Pg,,, and the data
collapse of £ in Fig. 4(d). The different scaling exponent
appears to be a particular feature of the mesoscopic
model that is at odds with atomistic simulations and
experiments. This may suggest that models including
only linear elasticity and quenched disorder [19,20] might
be too simple to recapitulate the detailed scaling features
of the percolation transition associated with amorphous
yielding.

To summarize, we have used experiments on colloidal
glasses and atomistic and mesoscale simulations to show
that the microscopic yielding of glasses originates from the
percolation of nonaffine, plastic regions. Nonaffine par-
ticles form clusters that grow with applied strain and
eventually merge. At some critical fraction of nonaffine
particles, the largest cluster abruptly takes over and absorbs
all other nonaffine particles to produce a percolated net-
work. The nonaffine clusters themselves have fractal shape,
and upon approaching the yielding transition, their size
diverges in a critical fashion. The robust fractal dimension
and its identical value in colloidal experiments and sim-
ulations points towards a universal critical transition at the
yielding of glasses.
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The general percolation phenomenology we uncover
here is robust and appears regardless of the microscopic
detail of the system studied. We have reported similar
results in experiments on colloidal glasses, where particles
have a micrometer size, in simulations of metallic glasses
where particles are at atoms, and in mesoscale simulations
where particles are not even present. This suggests a
common scenario ruled by the interplay between structural
disorder and elasticity, which are the two common ingre-
dients of the systems we study. However, it is less clear that
the phenomena are strictly universal in terms of critical
exponents and scaling functions. While in colloidal and
metallic glasses, clusters are described by three-dimen-
sional conventional percolation scaling, our mesoscale
model yields a different exponent v. This result raises
interesting questions on the most appropriate coarse-
grained description of the yielding of amorphous solids.
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