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We present a scalable hybrid architecture for the 2D surface code combining superconducting resonators
and hole-spin qubits in nanowires with tunable direct Rashba spin-orbit coupling. The backbone of this
architecture is a square lattice of capacitively coupled coplanar waveguide resonators each of which hosts a
nanowire hole-spin qubit. Both the frequency of the qubits and their coupling to the microwave field are
tunable by a static electric field applied via the resonator center pin. In the dispersive regime, an entangling
two-qubit gate can be realized via a third order process, whereby a virtual photon in one resonator is created
by a first qubit, coherently transferred to a neighboring resonator, and absorbed by a second qubit in that
resonator. Numerical simulations with state-of-the-art coherence times yield gate fidelities approaching the
99% fault tolerance threshold.
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Scalability is central to the ongoing efforts towards fault
tolerant quantum computation [1–9]. Owing to its high
error rate threshold and its benign requirement of only local
qubit interactions, the surface code [10] is a promising
candidate to achieve fault tolerance. Superconducting
circuits, with their long coherence times and high-level
of controllability, have emerged as an ideal platform for a
physical implementation of the surface code [11–17]. At
the heart of this approach lies the coherent light-matter
interaction between the electric dipole moment of a super-
conducting condensate and quantized microwave fields
[18]. This interaction, however, is a double-edged sword.
On the upside, it enables the readout and control of
superconducting qubits and of their interaction with each
other via the quantum bus [19,20]. On the downside, the
presence of an electric dipole moment means that unmoni-
tored degrees of freedom, such as thermal and quantum
fluctuations of the field, couple to the qubits and limit their
coherence [21]. Moreover, in a multiqubit system, the
accumulation of errors due to off-resonant couplings
represents a serious problem for scalability [15–17,22].
The ability to tune the light-matter coupling on and off on
demand is thus highly desirable. Superconducting qubits
with tunable qubit-resonator coupling have been realized
[23–26], but their robustness is limited since they rely on
quantum coherent interference at a symmetry point.
The recent discovery [27] of an electrically induced spin-

orbit interaction of Rashba type in the low energy hole
states of Ge/Si (core/shell) nanowires provides an attractive
alternative to realize a tunable coupling qubit. In this case
the qubit is encoded in two orthogonal dressed spin states
of a hole confined in a nanowire quantum dot. Hole spins
are particularly attractive since their p-wave orbitals have
minimal overlap with the nuclei resulting in long coherence
times [28–31] and have recently been demonstrated to be

compatible with industrial CMOS technology [32].
Crucially the strong direct Rashba spin-orbit interaction
(DRSOI) is controlled by an external electric field applied
perpendicular to the wire [27,29]. This enables the electro-
static control of the coupling between the spin degree of
freedom and the electromagnetic field along the wire.
In this Letter, we propose a scalable surface code

architecture obtained by combining nanowire hole-spin
qubits with a novel coplanar waveguide resonator grid
structure. The latter can be viewed as a generalization of the
celebrated 1D quantum bus architecture [19,20] to two
dimensions. Furthermore, owing to the small size of the
hole-spin qubits, a few tens of nanometers in length, they
can be entirely embedded within the microwave resonators
allowing for more compact resonator geometries with
enhanced vacuum field strengths. The electrostatic fields
required to tune the microwave-qubit coupling, are pro-
vided in situ by voltage biasing the resonator center
conductor thus reducing the number of required leads.
The system we consider is depicted schematically in

Fig. 1. It consists of a square lattice of coplanar microwave
resonators, with a hole-spin qubit placed at the field antinode
of each resonator. Here we consider full-wave resonators
where the resonator length equals the wavelength λ and the
qubits are placed at the central antinode. Each resonator is
capacitively coupled to four neighboring resonators forming
a horizontal “H” shape as shown in Fig. 1(g). The nanowires,
each containing a single hole-spin qubit, are situated inside
the trenches between the center conductor and the ground
plane defining the resonator, as depcited in insets (b)
and (e) of Fig. 1. The qubit is thus fully embedded within
the resonator. The electromagnetic fields are only weakly
screened inside the semiconductor of the nanowire enabling
a strong coupling between the qubit and the ac field
component along the wire [29].
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To characterize this system, we start by considering an
isolated site of the lattice composed of one resonator and
one hole-spin qubit. The nanowire containing the qubit is
oriented along the x axis and a magnetic field is applied
along z. We describe the hole harmonically confined along
the wire by the 1D effective Hamiltonian [33]

Hh ¼
p2

2m
þ 1

2
mω2

hx
2 þ αDRσypþ

gμBB⊥
2

σz: ð1Þ
Here, αDR is the strength of the DRSOI and B⊥ denotes the
magnetic field strength perpendicular to the axis of the
wire. The hole furthermore couples to the electromagnetic
field of the resonator and this is described in dipole
approximation via the HamiltonianHr ¼ eErmsxðaþ a†Þþ
ℏωra†a. Here Erms ¼ 1=W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωr=cl

p
is the x component of

the antinode vacuum root mean square field of the coplanar

waveguide (CPW) resonator with resonance frequency ωr,
trench width W, length l and capacitance per unit length c.
The full Hamiltonian is H ¼ Hh þHr. The effect of the
spin-orbit coupling is seen most clearly upon performing
the unitary transformation U ¼ exp ½iðx=lSOÞσy�, where
the spin-orbit length lSO ¼ ℏ=ðmαDRÞ characterizes the
length over which the spin flips due to spin-orbit coupling
in the absence of a magnetic field. This generalizes the
semiclassical approach of Refs. [34,35] to the quantum
regime. In the limit where lSO ≫ xZPF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωhÞ

p
, the

mixing of orbital and spin degrees of freedom is weak and
the transformed Hamiltonian reads [36]

H ≃Hr þ
p2

2m
þ 1

2
mω2

hx
2 þ ℏωZ

2

�
σz −

2x
lSO

σx
�
: ð2Þ

Here we have suppressed a c-number term and defined the
Zeeman frequency ωZ ¼ gμBB⊥=ℏ.
We are interested in the regime where ωh ≫ ωr, ωZ such

that the hole remains in its ground state and we can
adiabatically eliminate the center of mass motion of the hole
[36]. The dynamics of the hole spin coupled to the resonator
is then captured by an effective Jaynes-Cummings model

HJC

ℏ
¼ ωra†aþ

ω0
Z

2
σz þ νðaσþ þ a†σ−Þ; ð3Þ

where the transition frequency of the qubit is determined by
the renormalized Zeeman splitting

ω0
Z ¼ ωZ

�
1 −

ωZ

ωh − ωZ

�
xZPF
lSO

�
2
�
; ð4Þ

and the spin-field coupling strength is given by

ℏν ¼ βωZ

ωh − ωr

�
xZPF
lSO

�
: ð5Þ

Here, β ¼ eErmsxZPF is the dipole coupling strength between
the hole in the motional ground state and the vacuum field of
the resonator. Importantly, lSO depends, via the spin-orbit
coupling strength αDR, on the electric field component Ez
perpendicular to the wire. In the weak field limit αDR ∝ Ez
and the coupling ν increases linearly with Ez while ω0

Z
decreases quadratically. Thus the “off” state, Ez ¼ 0, corre-
sponds to a sweet spot for the qubit where it is protected
against fluctuations of the electric field to linear order. A
nonperturbative treatment, of which the above expressions
(4) and (5) are the leading order terms, can be found in
Ref. [29]. For Ge/Si nanowires, the Zeeman splitting in
Eq. (4) reaches the GHz frequency regime for magnetic field
strengths around one hundred milli Tesla.We emphasize that
our architecture is compatiblewith amagnetic field parallel to
the plane of the superconducting resonator, mitigating
adverse effects on the resonator quality factor [38].
Furthermore, the required electrostatic control field can be
generated by applying a voltage bias between the center
conductor and the ground plate of the resonator at a field node
as depicted in inset (d) of Fig. 1. By using a bias tee, the same

(a) (b)

(d)

(e)(c)

(g)

(f)

(h)

FIG. 1. Grid-bus surface code architecture. (a) and (c) Four-way
capacitor design minimizing undesired cross-couplings. (b) and
(e) A nanowire hole-spin qubit inside a capacitor in the trench of
the resonator. The electric field perpendicular to the wire Ez is
controlled by voltage biasing the center conductor via the bias-tee
shown in (f). (d) Resonator drive port placed at a node of the ac
field Ex. (f) Resonator grid layout. The light gray areas represent
the superconductor thin film on top of the dielectric substrate (dark
blue). The red and blue dots at the center of each resonator indicate
the positions of the hole-spin qubits. (g) Each resonator couples to
four neighboring resonators. (h) Resonator (black lines) and qubits
(red and blue bars) arranged in a square lattice. The red bars denote
code qubits while the blue bars denote ancilla qubits. The colored
rectangles represent the two types of plaquettes of the surface code
(e.g., XXXX or ZZZZ). The basis vectors on the lattice are
indicated by dark green arrows labeled n and m.
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port can be used to drive the resonator for the purpose of
single-qubit operations as explained further below.
Scaling up, we next consider an N ×M lattice of such

resonators, where each resonator is coupled capacitively to
four neighboring resonators as illustrated in Fig. 1(g). Because
of the strong suppression of the g factor along the axis of the
wires [39,40], we consider for each wire only the perpen-
dicular component of the applied magnetic field justifying the
applicability of Eq. (3) also in this case [36]. In the rotating
wave approximation, the dynamics on the lattice can be
modeledby the Jaynes-Cummings-HubbardHamiltonian [41]

H
ℏ
¼
XN

n¼1

XM

m¼1

�
ωZ

2
σznmþωra

†
nmanmþνnmðanmσþnmþH:c:Þ

�

þJ
X

n;m

ða†nmanmþ1þa†nmanm−1þa†nmanþ1mþa†nman−1mÞ:

ð6Þ

The interresonator coupling strength is given by
J ¼ 2ωrðCc=Cþ 4CcÞ, in terms of the mode frequency
ωr, the coupling capacitance Cc, and the effective self-
capacitance of the resonator modeC ¼ cl. The tunable spin-
resonator coupling of lattice site ðn;mÞ is denoted with νnm.
A scalable implementation of the surface code requires

(i) Two-qubit gates between nearest neighbors on a lattice.
(ii) Arbitrary single-qubit rotations. (iii) Individual qubit
readout in the computational basis. (iv) Parallelizability.
Conditions (i) and (ii) together allow one to encode the
error syndrome onto ancilla qubits and (iii) allows one to
read out the error syndrome. Condition (iv) means that the
gates must be performed in parallel so that the time for a
single syndrome measurement cycle does not increase with
the lattice size. In theory all stabilizer operator measure-
ments could be done simultaneously, since per definition
the stabilizer operators commute with each other. However,
in practice when the measurements of multi-qubit stabilizer
operators are decomposed into sequences of single and
two-qubit gates between pairs of qubits, a certain degree of
sequentiality is unavoidable. In the following we show how
our architecture meets the requirements (i) to (iv).
Single-qubit gates.—To address a particular qubit, the

center conductor of the corresponding resonator is voltage
biased, generating an electric field Ez ¼ E�

z perpendicular
to the wire [see Fig. 1(b)]. This effectively turns on the
DRSOI and couples the qubit to the ac field. Single-qubit
rotations around any axis in the x − y plane of the Bloch-
sphere can then be performed in a standard way [18], by
driving the resonator mode at the Lamb and Stark shifted
qubit resonance frequency with a coherent microwave drive
of appropriate phase [see Fig. 3(a) and [36]]. By concat-
enating rotations around different axes, arbitrary rotations
on the Bloch sphere can be generated. Interestingly, the
electric tunability of the Zeeman splitting provides a
shortcut for single-qubit phase gates: To acquire a phase

θ one simply has to bias the center conductor for a duration
T ¼ θ=ΔωZ with ΔωZ ¼ ωZðEz ¼ 0Þ − ωZðEz ¼ E�

zÞ.
Because each resonator is coupled only to its four orthogo-
nal neighboring resonators, single-qubit gates can be
performed in parallel on all code qubits and separately
on all ancilla qubits by alternatingly coupling one set of
qubits to the grid bus while the other remains uncoupled.
Nearest neighbor two-qubit gates.—A high fidelity two-

qubit gate can be realized by a generalization of the
resonator-bus mediated qubit-qubit flip-flop interaction
[18,19,29]. Since each qubit is directly coupled only to
one resonator, a virtual photon emitted by the first qubit
needs to hop from one resonator to a neighboring resonator
before being absorbed by the second qubit [see Fig. 3(b)].
A perturbative analysis [36] gives an effective coupling
between qubits at sites ðn;mÞ and ðn0; m0Þ of the form

HXY

ℏ
¼

X

nm;n0m0
Knm;n0m0σþnmσ−n0m0 þ H:c:; ð7Þ

where, in the weak coupling regime J ≪ jωZ − ωrj, the
coupling strength is given by [36]

Knm;n0m0 ¼ ðΔmþ ΔnÞ!
Δn!Δm!

νnmνn0m0

Δ

�
J
Δ

�
ΔmþΔn

; ð8Þ

with Δn ¼ jn − n0j, Δm ¼ jm −m0j and Δ ¼ ωr − ωZ.
The coupling strength decays exponentially with distance
on the lattice and the nearest neighbor coupling strength
(i.e., for n0 ¼ n and m0 ¼ m� 1 or n0 ¼ n� 1 and
m0 ¼ m), is [36] KNN ≃ ðJ=Δ2Þνnmνn0m0 . Compared with
the usual flip-flop interaction strength between two qubits
off-resonantly coupled to the same resonator mode, this
coupling is a factor J=jΔj smaller as it involves an addi-
tional off-resonant interresonator photon hopping. The
interaction (7) acting for a duration T, naturally gives rise
to the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate when KNNT ¼ π=4. Two such gates

together with single-qubit rotations can be used to imple-
ment the CNOT gates required for syndrome measurements
in the surface code. As with the single-qubit gates, it is
possible to perform many two-qubit gates in parallel by
taking advantage of the electric field tunability of the qubit
frequency. This is achieved by separating the qubits on the

lattice into two sets with frequencies ωðrÞ
Z and ωðbÞ

Z as
illustrated in Fig. 2. A full syndrome mapping cycle from
the code qubits onto the ancilla qubits can then be
performed in four steps.
Readout.—The readout of the ancilla qubits proceeds in

standard fashion by homodyne detection of the dispersive
phase shift incurred by reflected photons at the bare
resonator frequency [19,42]. During readout the code
qubits are decoupled from their resonators. Similar to
single-qubit operations, readout of all ancilla qubits can
be performed in parallel and does not require additional
resonators, greatly simplifying the circuit design. The
required reset of the ancilla qubits to their groundstate
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after measurement can be implemented for example by
using the method of Geerlings et al. [43].
Parameter estimates.—For the simulations presented

below we take J ¼ 159 × 2π MHz, which corresponds
to a coupling capacitance Cc ≃ 14 fF [36], and set the
resonator frequency to ωr ¼ 13.35 × 2π GHz. We further
set ωh ¼ 28 × 2π GHz, which for m≃ 0.012me, where
me is the electron mass, corresponds to xZPF ≃ 166 nm.
We consider a magnetic field strength B⊥ ¼ 194 mT
and a zero-field g factor for Germanium [29,31]
gðEz ¼ 0Þ≃ 5.5. This yields a zero-field qubit frequency
ωZðEz ¼ 0Þ≃ 14.934 × 2π GHz. The small length of the
nanowires allows for a coplanar waveguide geometry
with a small trench width, which we set to W ¼ 0.5 μm.
The vacuum field strength is consequently enhanced
to Erms ≃ 3.73 V=m. Finally, we assume a Rashba spin-
orbit parameter αDR=ℏ≃ 10 eðnmÞ2 × Ez. For an applied
field Ez ¼ 1 V=μm, this corresponds to lSO ≃ 635 nm.
According to Eq. (5), we thus estimate conservatively
that coupling strengths between νnm ¼ 0 at Ez ¼ 0
and νnm ≃ 40 × 2π MHz at Ez ¼ 1 V=μm are feasible.
The corresponding qubit frequency shift between the
“on” and the “off” states is ΔωZ ≃ 1.161 × 2π GHz, i.e.,
ωZðEz ¼ 1 V=μmÞ≃ 13.773 × 2π GHz, which allows for
phase gates on the nanosecond time scale.

Numerical simulations.—We characterize the theoretical
performance of single and two-qubit gates on a2 × 2 lattice in
the presence of dissipation and gate imperfections by numeri-
cally solving the Lindblad master equation (with ℏ ¼ 1)

_ρ ¼ −i½H þHd; ρ� þ κ
X

nm

D½anm�ρþ γ
X

nm

D½σ−nm�ρ: ð9Þ

Here H is given by Eq. (6), κ denotes the single photon
loss rate of the resonators, γ ¼ 1=T1 the qubit decay rate, and
D½O�ρ ¼ ð2OρO† − O†Oρ − ρO†OÞ=2. Figure 3(c) shows
the fidelity of a rotation the qubit at lattice site (0,0) around the
x axis by angle π averaged over all initial states on the Bloch
sphere as a function of the gate duration time T for
κ=h ¼ γ=h ¼ 10 kHz. This rotation is realized by a drive
on resonator (0,0) of the formHdðtÞ¼εðtÞðeiωdtaþe−iωdta†Þ
with frequency ωd¼ωZþð2n̄þ1Þχ and Gaussian envelop
εðtÞ ¼ ε exp½−ðt − t0Þ2=ð2σ2Þ� with ε¼πΔ=ð2σν ffiffiffiffiffiffi

2π
p Þ.

Here, σ¼T=5, t0¼T=2, Δ ¼ ωZ − ωr, and ωZ is the
bare qubit frequency in the “on” state with dispersive shift
χ ¼ ν2=Δ. The drive frequency shift ð2n̄þ 1Þχ with n̄≃
ε2=½Δ2 þ ðκ=2Þ2� corrects (approximately) for both the
Lamb and Stark shifts. The simulated fidelity [full red curve
in Fig. 3(c)] is upper bounded by Fφ ¼ ½1þ ð1=3Þe−γT þ
ð2=3Þe−½γ=2þγφ�T �=2 [dashed curve in Fig. 3(c)], which gives
the average fidelity for an ideal gate with a T1-limited qubit
subject to photon shot noise induced dephasing [21] with rate
γφ ≃ 2n̄κðπ=2Þ2 [blue curve in Fig. 3(c)]. The difference
between the two curves is a measure of gate imperfections
such as deviations from optimal pulse duration and spurious
entanglement between the photons and the qubit, which
increases with the drive strength.
Next we characterize the natural two-qubit gate gener-

ated by the interaction in Eq. (7). Figure 3(d) shows the
fidelity of a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate between qubits at sites (0,0) and

(0,1) obtained for KNNT ¼ π=4, averaged over the subset

FIG. 2. Frequency layout for parallelization of syndrome
mapping in four steps. Red (blue) bars denote qubits at frequency

ωðrÞ
Z (ωðbÞ

Z ). The dashed black arrows indicate which couplings are
resonant, i.e., active in a given configuration. The mapping of a
ZZZZ stabilizer is highlighted as an example (magenta arrows).

(c)(a) (d)

(b)

FIG. 3. Gate fidelity averaged over initial states on the Bloch sphere: F av ¼ ð1=4πÞ R 2π
0 dφ

R
π
0 dθ sinðθÞF ðθ;φÞ, with F ðθ;φÞ ¼

hθ;φjρðTÞjθ;φi and jθ;φi ¼ cosðθ=2Þj0i þ eiφ sinðθ=2Þj1i. (a) and (c) Single-qubit rotation around the x axis by angle π. Here
j0i ¼ jgi00, j1i ¼ jei00, the remaining qubits are initialized in their ground state. Only the qubit at (0,0) is coupled to its resonator with
Ez ¼ 0.8 V=μm and the drive strength is varied. The ideal gate unitary is RxðπÞ ¼ e−iðπ=2Þσ

x
00 . (b) and (d) Two-qubit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate. Here

j0i ¼ jgi00jei01, j1i ¼ jei00jgi01, the other qubits are initialized in their ground state. The qubits at (0,0) and (0,1) are coupled to their
resonators with varying but equal field strength Ez. The ideal gate unitary is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p ¼ e−iðπ=4Þðσ
þ
00
σ−
01
þσ−

00
σþ
01
Þ. Full curves are numerical

results obtained by solving the master equation (ME) (9), and the dashed curves show analytic upper bounds for ideal gates [36].

PRL 118, 147701 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 APRIL 2017

147701-4



of initial two-qubit states in spanfjegi; jgeig, while the
remaining two qubits are in their ground state. In this case,
the gate duration T is fixed by the interaction strength. The
latter, however, depends on the strength of the applied
electric field Ez. For small Ez the averaged gate fidelity
agrees well with that of an ideal T1-limited

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate,

which for the considered initial states in the one-excitation
manifold, is simply F 0 ¼ e−γT [dashed curve in Fig. 3(d)].
As the field and hence the interaction strength is increased,
the gate becomes faster and, at first, the fidelity increases.
Because an increasing electric field also reduces the
detuning between the qubit and the resonator, the dispersive
approximation breaks down for too large an applied field,
which is reflected in fluctuations and overall suppression of
the fidelity at strong fields.
Conclusion.—We have proposed a scalable hybrid

architecture for fault tolerant quantum computation via
the surface code. The core of this system consists of a
square lattice of capacitively coupled superconducting
resonators, which serves as a two-dimensional quantum
bus to mediate interactions between hole-spin qubits.
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