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Homotopy theory and first-principles-based effective Hamiltonian simulations are combined to
investigate the stability of topological defects in proper ferroelectric crystals. We show that, despite a
nearly trivial topology of the order parameter space, these materials can exhibit stable topological point
defects in their tetragonal polar phase and stable topological line defects in their orthorhombic polar phase.
The stability of such defects originates from a novel mechanism of topological protection related to

finite-temperature fluctuations of local dipoles.
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Topologically nontrivial dipolar configurations are com-
monly expected to appear in ferroelectric nanostructures
(such as dots, films, nanocomposites, rings, or super-
lattices, see Refs. [1-12] and references therein) as a result
of the inherent depolarizing fields arising from surface or
interface effects. In the absence of depolarizaing fields, the
existence of topological defects can be also expected in
structurally disordered materials (e.g., relaxor ferroelectrics
[13]) due to strong, randomly distributed, local fields
stemming, e.g., from alloying [14]. In both of these cases,
topological defects constitute an intrinsic feature of the
ground state of the system and correspond to energetically
favorable dipolar configurations. On the other hand, topo-
logical defects have no reason to appear in systems free of
depolarizing and/or local fields, unless granted protection
by some alternative, “topological’, stabilization mecha-
nism. Theoretically, such mechanisms are conventionally
related to nontrivial topology of the order parameter (OP)
space [15] that can come in play whenever the symmetry of
the system is continuous. In such cases, continuous
symmetry allows the order parameter to swirl and topo-
logically protects intriguing localized patterns like vortices,
circulation lines, skyrmions, and monopoles (hedgehogs
and antihedgehogs) even at low temperatures where perfect
monodomain order is expected [15]. However, ideal ferro-
electric crystals exhibit neither local nor depolarizing
fields, and the underlying symmetry in these materials is
at best approximately continuous, especially in improper
ferroelectric compounds in the vicinity of the critical
temperature or in some solid solutions near their morpho-
tropic phase boundary. Therefore, to the best of our
knowledge, it is presently unclear if bulks of proper
ferroelectrics can host stable topological defects in their
macroscopic polar phases. If that is the case, it will be also
crucial to determine the reason behind the hypothetical
existence of stable topological defects in polar phases of
proper ferroelectrics.

In this Letter, we use bulk BaTiOj3, as a model example,

to investigate whether this material can exhibit topological
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defects. For this, we first resort to the analysis of atomistic
effective Hamiltonian simulations via the homotopy theory
[16]. Specifically, instead of considering topology of the
order parameter (OP) space [15], we investigate the top-
ology of internal states manifolds [21] (ISM), which leads
us to predict that the nontrivial ISM topology in all
ferroelectric phases of BaTiOj results in the stabilization
of topological defects of different dimensionality. Large-
scale effective Hamiltonian Monte Carlo simulations are
then conducted for bulk BaTiO; to confirm such novel
predictions. Technically, we find that stable defects corre-
spond to pointlike defects with hedgehog or antihedgehog
cores in the tetragonal polar phase of BaTiOs bulk and to
linear defects formed by vortex or antivortex cores in its
orthorhombic polar phase. The results of our work, hence,
reveal a novel mechanism of topological protection, namely
the stabilization by finite-temperature fluctuations of local
dipoles, that can be realized in proper ferroelectrics. They
also provide a theoretical ground for further investigations
of topological defects in systems with finite underlying
symmetries.

Barium titanate (BaTiO3) bulk is a prototypical proper
ferroelectric. Upon cooling, it undergoes a serie of struc-
tural phase transitions [22] with a ferroelectric Curie
temperature corresponding to the transition from para-
electric (P) to tetragonal (7)) phase. The P — 7 transition
is then followed by a tetragonal to orthorhombic (7 — O)
phase change, with a subsequent symmetry breaking
resulting in a rhombohedral (R) ground state. Notably,
at each transition, global symmetries of both high- and low-
temperature phases are described by two different point
symmetry groups, which we will denote by G and H,
respectively. In this case, it is easy to see that the
corresponding OP spaces, defined as quotient groups
G/H [15,23], comprise finite number of elements and
are thus endowed with point set topology [16]. For
instance, at the P — 7 transition, the order parameter space
is topologically equivalent to a set of six disconnected
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points: G/H comprises six elements related to symmetry-
equivalent orientations of a macroscopic polarization in the
tetragonal 7 phase [[100], [100], [010] etc. pseudocubic
(p.c.) directions]. Therefore, at each phase transition, the
topology of the order parameter space is equivalent to that
of a finite set of points. For finite point sets, all the
homotopy groups z,, apart from the zeroth homotopy set
7o [15,23] are trivial and hence, homotopy based classi-
fication [15] does not reveal existence of neither point nor
linear defects for all ferroelectric phases of BaTiO; bulk.
Moreover, this conclusion should apply not only to BaTiO4
bulks, but also to any proper ferroelectric bulk, at the
exception of some solid solutions in their morphotropic
phase boundary for which the symmetry might be approx-
imately continuous. For example, it should be valid for
Ti-rich Pb(Zr,Ti)O; alloys [24]. On the other hand,
recent experiments have revealed that in the Ti-rich
Pb(Zry,Tigg)O3 system, local dipoles can nevertheless
form continuous vortexlike structures [11] similar to linear
topological defects in magnetic systems. The source of
this apparent discrepancy may lie in the definition of the OP
space that does not allow us to capture continuous rotation
of local dipoles away from the symmetry-allowed lattice
directions. Therefore, in order to classify topological
defects in bulks made of proper ferroelectrics, one may
have to explore not the structure of quotient groups G/H,
but rather the topology of full internal states manifold [21]
that would comprise all values of local dipoles accessible
within a specific ferroelectric phase.

Here, we explore such possibility and propose to define
such internal states manifolds M via a single variable
probability distribution function p(u) given by

1 A
plu) =~ / di / Pu;, . du,, e PHalludd) (1)

where u; denotes local dipole moments (local modes) in
each unit cell i =1,...,N of a ferroelectric crystal,
corresponds to the inverse temperature in energy units
p = 1/kT, and Z is the thermodynamic partition function.
The H.;({u;},7) function stands for any effective
Hamiltonian describing energy landscape of unstable
ferroelectric modes [25,26], and integration in Eq. (1) is
carried over all values of strain variables # (both homo-
geneous and inhomogeneous), and all except one local
mode degrees of freedom. As can be readily seen from its
definition, p(u) gives a probability of any local dipole
within a crystal to take a certain value u and can therefore
be used to define M as a set of u values for which
p(u) > &, with € > 0 being an infinitesimally small pos-
itive constant introduced to cutoff internal states with
infinitely small occurrence probability. We expect this
definition to coincide with the notion of internal states
manifold described in Ref. [21], and moreover, to practi-
cally allow direct evaluation of M using standard
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FIG. 1. Regions of finite probability p(u) > ¢ as obtained from
Monte Carlo simulations (second column), and the internal states
manifolds M (third column) for paraelectric (P), tetragonal (7),
orthorhombic (0), and rhombohedral (R) phases. The third
column also presents the Euler characteristic y of M, related
nontrivial homotopy groups, and the derived stable topological
defects. Each symmetry breaking phase transition leads to a
rupture of the manifold M, changing its topology as signified by
the change of the Euler characteristic y.

computational schemes, such as Monte Carlo or molecular
dynamics simulations. Here, we resort to Monte Carlo
simulations [27] and the first principles based effective
Hamiltonian model of Ref. [28] to obtain the topology of
the manifolds M for all distinct structural phases of
BaTiO;. The numerical estimate of p(u) is obtained using
12 x 12 x 12 (8640 atoms) periodic supercells and 10°
Monte Carlo sweeps. The introduction of the finite cutoff &
is necessary in case of numerical evaluation of the integral
(1) that is subject to a finite errors in p values, as well as
artifacts related to finite supercell sizes. However, we
expect that sufficiently increasing the supercell size and
the accuracy of numerical integration should allow for
values of & at least as low as the numerical precision of
computer arithmetic.

The results of the performed simulations are presented in
Fig. 1. It shows three-dimensional plots of p(u) > € regions
obtained from Monte Carlo simulations [with &~ 10~*
(eay)™>, where e and a denote electron charge and Bohr
radius, respectively] along with the corresponding recon-
structed internal space manifolds M. The necessity of
reconstruction of M from the obtained Monte Carlo data
stems from the well-known inability of the Metropolis
algorithm to efficiently sample the full configuration space
for symmetry-broken phases. Indeed, below transition
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temperature, the random walk is usually confined to the
configuration space regions corresponding to one single
macroscopic order parameter orientation, while the M set
has to include all possible local dipole values. Therefore,
for 7, O, and R phases, the probability distribution p(u)
obtained from Monte Carlo simulations should be properly
symmetrized so as to account for all possible local
dipole states. At this point, it is important to note that
all the relevant anisotropic energy contributions present in
the used H.; model manifest themselves in the symmetry
of probability distribution function p(u) [left column of
Fig. (1)] and as a result in the geometry of internal states
manifolds [note cuboid shapes in the right column of
Fig. (1)]. On the other hand, thermal entropy, being
sufficiently high in 7 and O phases, allows local dipoles
to significantly deviate from orientations dictated by the
anisotropy. As a result, the local symmetry can differ from
the macroscopic one, since local dipoles can adopt ori-
entations very different from the direction of global
polarization. This possible discrepancy between local
and global scales is not taken into account in the traditional
picture of topological defects that relies only on the
topology of the order parameter space. On the other hand,
in the low-temperature R phase, thermal fluctuations are
restricted, and the coinciding local and global symmetries
render the internal states and the order parameter manifolds
topologically equivalent. To see this, one can reconstruct
the order parameter space from the p(u) function by
evaluating polarization P = [ d®uup(u) and symmetrizing
the resulting single-point set using the cubic point group O,
(paraelectric phase symmetry).

Looking at the results presented in Fig. 1, we see that in
the paraelectric phase, M corresponds to a volume
bounded by a cube with rounded edges centered at
u = 0. The global maxima of p are located on the lines
corresponding to the rhombohedral polarization directions
(i.e., along p.c. (111)), while the saddle points are located
at orientations corresponding to tetragonal (p.c. (001)) and
orthorhombic (p.c. (110)) polarization orientations. The
global minimum is located at the center of coordinate
system. Moreover, the set M is simply connected and
homotopy equivalent to a three-dimensional ball.
Therefore, the Euler characteristic y of M is equal to
one, and all homotopy groups 7, of M are trivial [20].

Interestingly, the symmetry breaking occurring at the
‘P — T transition leads to a change of the topology of M.
Indeed, below the Curie temperature, the probability of
observing local dipoles with small magnitudes vanishes,
causing a rupture of M atu = 0 (see third column of Fig. 1).
Hence, for the 7 phase, y =2 and M are homotopy
equivalent to a two-dimensional sphere, meaning that its
second homotopy group 7z, is nontrivial (z, = Z) [20].
At this point, it is worth noting the difference between
manifold M and the corresponding order parameter space.
Specifically, the structure of M (see Fig. 1) suggests that

local dipoles significantly deviate from the average
polarization value in the tetragonal domains. As a matter
of fact, in accordance with the famous Comes-Guinier-
Lambert model [29], the probability distribution p(u) at
saddle points located on the Cartesian axes u,, u,, and u,
is less than at the maxima corresponding to the (111)-
equivalent directions. Hence, for the 7 phase of BaTiOs,
the local dipole moments actually have the freedom to
continuously change between domains with different polari-
zation orientation. In contrast, the order parameter space
is discrete and describes only the possible macroscopic
polarization values. This indicates that the suggested insuf-
ficiency of the order parameter space to characterize possible
complex nanoscale dipolar patterns holds in case of BaTiO;.

The 7 — O transition results in additional ruptures occur-
ring at u corresponding to macroscopic polarization values
in the 7 phase. The Euler characteristic of the resulting
manifold is negative and equals to y = —4. Moreover, as can
be seen from Fig. 1, z; is nontrivial in the O phase; i.e., there
are nonequivalent classes of closed loops [15] lying within
M. Similarly to the P and 7 phases, p has global maxima at
the rhombohedral directions and saddle points at orthorhom-
bic directions. Thus, as in the case of the 7 phase, the local
dipoles within a given orthorhombic domain actually have
lower probability to be oriented along the mean polarization
direction and effectively fluctuate between several possible
rhombohedral ground state orientations. Finally, the phase
transition to the R ground state is marked by ruptures
occurring at # equal to polarization values in the O phase,
making the M manifold a union of eight nonintersecting
simply connected volumes. Each of these volumes corre-
sponds to one of the eight equivalent rhombohedral polari-
zation directions, and M can be practically described by the
point set topology. Therefore, for R phase, the topology of
M is actually equivalent to that of the order parameter space
and is therefore characterized by nontrivial zeroth homotopy
set 7, [20,23].

Summarizing the obtained evolution of the internal states
manifold M of BaTiO5 with temperature, we would like to
stress several observations. Firstly, at each phase transition,
the topology of M changes, with M being ruptured at
points u corresponding to values of macroscopic polari-
zation in the higher symmetry phase. Secondly, our results
show that the 7 and O phases are stabilized by strong
thermal fluctuations that enable local dipoles to continu-
ously span a subset of spatial orientations, comprising but
not restricted to (111) directions. In this sense, the present
analysis goes beyond the Comes-Guiner-Lambert model
[29,30]. Finally, the revealed fluctuation statistics show that
local dipoles have the freedom to continuously interpolate
between symmetry equivalent ferroelectric domains,
endowing M of 7 and O phases with nontrivial topologi-
cal structure.

The last conclusion requires some additional attention,
since it is directly related to stability of topological defects.
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FIG. 2. (a) Dipolar configuration of a hedgehog (antihedgehog)
pair in the 7 phase at 300 K. Pink and blue unit cells enclose a
hedgehog and antihedgehog core, respectively. (b) Configuration
exhibiting two vortex (antivortex) pairs in the O phase at 250 K.
Yellow and blue polygons highlight unit cell faces enclosing
vortex (antivortex) cores, respectively. In both panels, vector P
shows the pseudocubic crystallographic orientation of polariza-
tion, while colored arrows represent local dipoles (), with blue to

red color corresponding to an increasing angle between u and P.

Indeed, taking M in place of order parameter space as
codomain in a homotopy-based classification of topological
defects [15,23], allows us to reveal that the 7 and O phases
can, in fact, exhibit a variety of stable topological defects.
Specifically, nontrivial 7, of M in the 7 phase suggests
topological protection of pointlike defects [23], such as
hedgehog (antihedgehog) cores. On the other hand, in the
O phase, M is characterized by the nontrivial z; yielding
protection of linear defects [15], e.g., circulation lines
composed of two-dimensional vortex or antivortex cores.
Finally, in the R phase, nontriviality of z, should yield
topological protection of two-dimensional defects, such as
domain walls [23], in accordance with discrete topology
of the order parameter space. Notably, while the stability of
domains walls at low temperatures (in the R phase of
BaTi0Os3) has been confirmed by first-principles simulations
(e.g., see Ref. [31] and references therein), we are not aware
of any prediction related to the occurrence of stable point-
and linear-defects in its 7 and O phases, respectively.

To check such predictions, we further performed large-
scale Monte Carlo simulations using L x L x L supercells,
with L typically varying between 32 and 58, annealed
from 7' = 500 K down to 7' = 190 K with a step of 10 K
(using again the effective Hamiltonian of Ref. [28]). At
each temperature, the system was relaxed during 107
Monte Carlo sweeps, which was sufficient to always obtain
a macroscopic polar state. Upon reaching thermal equilib-
rium, the average densities of hedgehog-antihedgehog pairs
p.. and vortex-antivortex pairs p; were computed for each
considered temperature (at each 7', both p, and p; were
found to be dynamical, i.e., fluctuating in the course of
Monte Carlo sweeps). Examples of such defects obtained
from our simulations for L = 32, are shown in Fig. 2 (note
that similar defects, but of larger size can be also observed
once bigger supercell sizes are used as shown in
Supplemental Material [16]), while Figs. 3(a) and 3(b)
present the calculated temperature dependence of the
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FIG. 3. Calculated temperature dependence of the equilibrium

densities of (a) hedgehogs (antihedgehog) pairs in the polar
tetragonal phase and (b) vortex (antivortex) pairs in the polar
orthorhombic phase. Error bars correspond to standard deviation
and whenever are not visible, become smaller than the size of the
data points.

equilibrium p, and p; for L =46. From Figs. 3(a)
and 3(b), one can see that, for 265 K < T < 365 K
(corresponding to the stability range of the 7 phase within
the employed effective Hamiltonian scheme), p, is finite,
decreasing as the temperature is reduced within 7 until
vanishing at, and below, the 7 — O transition (265 K).
Moreover, the calculated p; is finite in the O phase
(215 K < T <265 K), significantly decreasing as the
temperature is reduced and eventually vanishing when
the R phase is reached. Therefore, the mere existence of
hedgehogs (antihedgehogs) in the 7 phase and vortices
(antivortices) in the O phase confirms the prediction of
their stability arising from the nontrivial topologies of
calculated ISM presented in Fig. 1.

Whereas the new mechanism of topological protection
considered in this study is different from the conventional
mechanism related to continuous symmetry of the
Hamiltonian, the resulting topological defects share many
similar features in both cases. Particularly, the conventional
decomposition [15] of the energy cost of a defect into the
energy of its core (independent of the spatial extent of
the defect) and the energy of the deformation of the dipolar
field caused by the defect (proportional to the defect size)
should hold for BaTiO; in the same way, it is valid for
continuous-symmetry Heisenberg and XY models.
Therefore, the physics of topological defects seen in
continuous-symmetry models [15] can be also observed
in proper ferroelectrics. For instance, in the 7 and O
phases, we clearly observe the bonding of hedgehogs
(antihedgehogs) and vortices (antivortices), respectively
[see Fig. (2) as well as panel (a) of Fig. (1) of
Supplemental Material [16]], due to the confinementlike
growing of the energy with increasing distance between
defects of opposite topological charges.

In summary, in this study, we have explored nontrivial
topological defects in ferroelectric phases of BaTiO; bulks.
Our results show that, despite the underlying finite
symmetry, the tetragonal and orthorhombic polar phases
of this compound can exhibit stable point defects, such as

147601-4



PRL 118, 147601 (2017)

PHYSICAL REVIEW LETTERS

week ending
7 APRIL 2017

hedgehog or antihedgehog cores in the 7 state and line
defects composed of vortex or antivortex cores in the O
phase. Moreover, we have demonstrated that the topologi-
cal protection of such defects is related to nontrivial
topology of the internal states manifolds rather than that
of the order parameter space and hence, stems from finite-
temperature fluctuations. We thus hope that the present
study deepens the current knowledge of the fascinating and
active research field devoted to topological defects.
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