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By means of large-scale quantum Monte Carlo simulations, we examine the quantum critical scaling of
the magnetic excitation gap (the triplon gap) in a three-dimensional dimerized quantum antiferromagnet,
the bicubic lattice, and identify characteristic multiplicative logarithmic scaling corrections atop the leading
mean-field behavior. These findings are in accord with field-theoretical predictions that are based on an
effective description of the quantum critical system in terms of an asymptotically free field theory, which
exhibits a logarithmic decay of the renormalized interaction strength upon approaching the quantum critical
point. Furthermore, using bond-based singlet spectroscopy, we identify the amplitude (Higgs) mode
resonance within the antiferromagnetic region. We find a Higgs mass scaling in accord with field-
theoretical predictions that relate it by a factor of

ffiffiffi
2

p
to the corresponding triplon gap in the quantum

disordered regime. In contrast to the situation in lower-dimensional systems, we observe in this three-
dimensional coupled-dimer system a distinct signal from the amplitude mode also in the dynamical spin
structure factor. Its width is observed to vanish proportional to the Higgs mass in the accessible proximity to
the quantum critical point.
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Quantum critical three-dimensional antiferromagnets
provide considerably valuable condensed matter realiza-
tions of (infrared) asymptotically free quantum field
theories: based on the quantum-to-classical mapping, the
critical field theory that describes the underlying quantum
critical point is the classical four-dimensional O(3) ϕ4

theory [1–6]. Because of a logarithmic decay of the
renormalized interaction strength upon approaching the
critical point, this field theory exhibits logarithmic correc-
tions to a Gaussian fixed point [7–10]. This leads to
characteristic multiplicative logarithmic scaling corrections
to the bare mean-field behavior in various physical quan-
tities that are in principle accessible by several experimental
probes, such as in thermodynamic measurements or neu-
tron and light scattering techniques [6,11–14], if probed at
the relevant energy scales near the quantum critical point.
A well characterized example system of this scenario is

provided by the dimerized spin-half compound TlCuCl3:
under the application of hydrostatic pressure, this system
features a quantum phase transition from a gapped quantum
disordered state into an antiferromagnetically ordered
phase [15]. The magnetic excitations across the quantum
critical region have been analyzed in detail recently by
inelastic neutron scattering [16–18]. These studies identi-
fied the evolution of the gapped magnon mode from the
dimerized quantum disordered regime (frequently referred
to also as the “triplon” mode in reference to its threefold
degeneracy in the isotropic Heisenberg spin-exchange
case), to the low-energy (transverse) Goldstone modes that
accompany the spontaneous breaking of spin-rotation
symmetry in the ordered phase. Furthermore, inelastic
neutron scattering on this compound also identified a

gapped (longitudinal) amplitude mode of the order-
parameter field [17,18], frequently referred to recently as
a Higgs mode [19,20]. This amplitude mode softens upon
approaching the quantum critical point [21,22]. Within a
Gaussian field theory description, its excitation gap (the
Higgs mass) ΔHðgÞ scales as ΔHðgÞ ¼

ffiffiffi
2

p
ΔðgÞ with the

mass scale ΔðgÞ in the vicinity of the quantum critical point
[6,23]. Here, g is a dimensionless tuning parameter (related
to pressure), with the critical point located at g ¼ gc. The
mass scale ΔðgÞ in the antiferromagnetic region, g < gc,
relates via ΔðgÞ ¼ Δt½gc þ ðgc − gÞ� to the triplon excita-
tion gap ΔtðgÞ in the quantum disordered regime, g > gc.
Recently, the data for TlCuCl3 have been reanalyzed from
the perspective of the asymptotic freedom scenario [6]. It
was, however, also argued that the available experimental
data may not provide robust evidence for logarithmic
corrections, given the size of the error margin and a
reduced number of data points near the quantum critical
point [14]. In order to probe for logarithmic scaling
corrections in quantum critical spin dimer systems, it is
thus crucial to compare these field-theoretical predictions
with unbiased high-precision results.
Here, we provide such a characterisation of the

quantum critical scaling of the excitations in three-
dimensional dimerized antiferromagnets by addressing,
directly, the relevant dynamical quantities using quantum
Monte Carlo (QMC) simulations. In particular, we analyze
the scaling of the magnetic (triplon) excitation gap (Δt)
as well as the Higgs mass (ΔHÞ near the quantum
critical bicube Heisenberg model, the most basic three-
dimensional coupled dimer system. By probing the system
in close vicinity to its quantum critical point, we identify
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multiplicative logarithmic scaling corrections and also
confirm the characteristic

ffiffiffi
2

p
value of the gap ratio.

Furthermore, we find that—in contrast to the two-
dimensional case of the Heisenberg bilayer system—the
Higgs excitation mode in the three-dimensional bicube
system can be identified not only by the singlet-based
scalar susceptibility [19,24–26] but also as a distinct
resonance mode in the dynamical spin structure factor,
which relates directly to inelastic neutron scattering.
Before presenting our findings, we first introduce the

model system and the used QMC approach. The spin-1=2
Heisenberg model on the bicubic lattice consists of an
arrangement of spin dimers on a simple cubic lattice: each
unit cell contains one such dimer, with a common vector
connecting the two spins forming the dimer in each unit cell
[14,27]. The Hamiltonian is hence given by

H ¼ J0
X
i

Si1 · Si2 þ J
X
hi;ji

ðSi1 · Sj1 þ Si2 · Sj2Þ; ð1Þ

where spin Siμ resides on the first (μ ¼ 1) and second
(μ ¼ 2) site of the dimer within the ith unit cell of the cubic
lattice (see Fig. 1 for an illustration). Furthermore, J0
denotes the coupling within each dimer, and J the coupling
between spins in different unit cells. In the following,

we denote by g ¼ J0=J the ratio of the two coupling
constants and set the lattice constant a of the cubic lattice
to 1. For this spin dimer system, multiplicative logarithmic
corrections were identified in several thermodynamic
quantities, such as the g dependence of the ordering
temperature, in the vicinity of the quantum critical point
at g ¼ gc ¼ 4.837 04ð6Þ [14] that separates the antiferro-
magnetic low-g phase from the quantum disordered large-g
regime. The bicube model contains an inversion symmetry
with respect to exchanging the spins with μ ¼ 1, 2 in
all unit cells. We account for this additional quantum
number by assigning a forth component to an originally
three-dimensional momentum space vector. Hence,
k ¼ ðkx; ky; kz; kpÞ, with kp ¼ 0 or π, denoting the sym-
metric and antisymmetric channel with respect to dimer
inversion, respectively. Correspondingly, each spin is
assigned a position vector riμ, with a forth component
equal to 0 (1), for μ ¼ 1 (μ ¼ 2).
Of particular interest to our analysis is the dynami-

cal spin structure factor SSðω;kÞ ¼ ð1=NsÞ×R
dt
P

i;j;μ;νe
iðωt−k·ðriμ−rjνÞÞhSiμðtÞ · Sjνð0Þi, where Ns

denotes the number of spins, and kp ¼ 0 (kp ¼ π) refers
to the symmetric (antisymmetric) sector. In the presence of
long-range antiferromagnetic order, one may also distin-
guish the components of SSðω;kÞ parallel and transverse to
the order parameter orientation, in which case SSðω;kÞ
represents a rotational average that is probed by the
QMC simulations. In addition to the spin correlations,
we also analyze correlations among the dimer bond-based
spin-exchange terms, Bi ¼ Si1 · Si2, and define a
corresponding scalar response function in terms of the
dynamical singlet structure factor SBðω;kÞ ¼
ð1=NdÞ

R
dt
P

i;je
iðωt−k·ðri−rjÞÞhBiðtÞBjð0Þi, where Nd ¼

Ns=2 denotes the number of dimers. Here, k and the ri
denote three-dimensional cubic lattice k-space and lattice
position vectors (i.e., with a vanishing forth component),
respectively, where the operator Bi resides at position ri on
the simple cubic lattice.
We analyze these dynamical quantities of the bicube

Heisenberg model using QMC simulations based on the
stochastic series expansion method with directed loop
updates [28–30], considering finite systems with Ns ¼
2L3 lattice sites and periodic boundary conditions. We used
systems with L ranging from 8 up to 26 close to the
quantum critical point, which corresponds to up to Ns ¼
35 152 spins. In order to access ground state properties, the
inverse temperature β has been chosen to be sufficiently
large. This typically required βJ ≥ 2L. In order to calculate
the dynamical spin structure factor, we efficiently [31]
measured the imaginary-time displaced spin-spin correla-
tion functions directly in Matsubara frequency representa-
tion [32]. The numerical inversion to obtain SSðω;kÞ from
the Matsubara frequency QMC data was performed using
the stochastic analytic continuation method in the formu-
lation of Ref. [35]. For the dynamical singlet structure

FIG. 1. Triplon (Δt) and Higgs (ΔH) gap in the vicinity
of the quantum critical point of the bicube coupled dimer
antiferromagnet. The dashed line indicates a scaling of ΔHðgÞ ¼ffiffiffi
2

p
Δt½gc þ ðgc − gÞ�. Estimates for ΔHðg < gcÞ from the

dynamical spin (singlet) structure factor are shown by circles
(diamonds), with an estimated uncertainty of order the symbol
size. The results for Δtðg > gcÞ are shown by circles, and the full
line is a guide to the eye. The upper inset shows, by circles,
(diamonds) the finite-size values of ΔH as estimated from the
position of the second (main) peak in SSðω; 0Þ (SBðω;QÞ) at
g ¼ 4.7. Solid lines show extrapolations linear in 1=L2 to the
thermodynamic limit. Both phases on the bicube lattice are
illustrated by the lower insets, where colored (grey) bonds denote
J (J0) couplings.
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factor SBðω;kÞ, we measured the corresponding bond-
bond correlation functions directly in imaginary time,
binned over finite-width imaginary-time windows [31].
Using an appropriate kernel for the analytic continuation,
we can directly relate SBðω;kÞ to these imaginary-time
binned data [26].
The dynamical spin structure factor SSðk;ωÞ is domi-

nated by the single-magnon dispersion, which for g < gc
softens at the antiferromagnetic Bragg peak position
Q ¼ ðπ; π; π; πÞ, while a finite triplon gap Δt exists at
k ¼ Q in the structure factor data for g > gc [32]. For a
quantitative analysis of the g dependence of Δt in the
thermodynamic limit, we performed a systematic finite-size
scaling analysis. For this purpose, we obtained the values of
Δt for various g > gc and different system sizes by
extracting from the imaginary-time spin-spin correlation
function SSðτ;kÞ at k ¼ Q the low-temperature asymptotic
form SSðτ;QÞ ∝ exp ð−τΔtÞ. Here, SSðτ;kÞ is obtained
from the Matsubara frequency data by a discrete Fourier
back-transformation [36]. Based on the finite-size depend-
ence ξτðLÞ ¼ ξτ − b exp ðcLÞ of the correlation-length in
the imaginary-time direction, where ξτ ¼ 1=Δt [32,37], and
b and c are fit parameters, we obtain the thermodynamic
limit values of Δt (cf. Fig. 1).
In order to closer examine the quantum critical scaling,

Δt is shown as a function of the relative distance from the
quantum critical point, ðg − gcÞ=gc, in Fig. 2 in a log-log
plot. Also included in Fig. 2 is a comparison of the data to a
square-root scaling proportional to ðg − gcÞ1=2, correspond-
ing to Gaussian mean-field behavior. It is clear from Fig. 2,
that this form does not account for the gap data scaling. In
fact, the logarithmic decay of the renormalized interaction
strength upon approaching the quantum critical point leads
to a logarithmic correction to the mean-field scaling
behavior,

ΔtðgÞ ∝
�
g − gc
gc

�
1=2

���� ln g − gc
gc

����
−5=22

; ð2Þ

in the vicinity of the quantum critical point [6,10,38,39].
This follows from the quantum-to-classical mapping with a
dynamical critical exponent z ¼ 1, and relating Δt ¼ ξ−1τ to
the correlation length in the imaginary-time direction.
The solid line in Fig. 2 shows that the numerical data
are well in accord with this analytic prediction up to values
ðg − gcÞ=gc ≲ 0.3. Fitting the numerical data to the scaling
law in Eq. (2) with the exponent 5=22 replaced by a free fit
parameter ν̄, we obtain an independent estimate of
ν̄ ¼ 5.2ð1Þ=22, when all data with ðg − gcÞ=gc < 0.25 is
included, and with a reduced χ2 value (per degree of
freedom) of χ2=DOF ¼ 1.2. Further analysis shows that the
triplon gap data does not fit well to such a scaling form
anymore (with values of χ2=DOF rapidly exceeding values
of order 10), if further data points beyond ðg − gcÞ=gc >
0.35 are included into the fit range. Also shown in Fig. 2 is
the large-g perturbative expansion result Δt ¼ J0 − 3J þ
OðJ2Þ for the triplon gap, which traces the data well for
ðg − gcÞ=gc > 1. We note that in the crossover region no
indication for a distinct pure Gaussian mean-field behavior
can be seen.
We next address the amplitude (Higgs) mode in the

bicube model. Figure 3 shows the spin spectral function
SSðω;QÞ for various values of g < gc. While the signal is
dominated by the Bragg peak at ω ¼ 0, we also identify a
second, distinct spectral feature for all shown values of g.
This broader peak furthermore softens upon approaching
the quantum critical point and also sharpens closer to gc. By
tracing the peak position as a function of g, we obtain the
excitation energies indicated by open circles in Fig. 1, after
performing, again, an extrapolation to the thermodynamic
limit (an example of which is shown in the inset of Fig. 1

FIG. 2. Quantum critical scaling of the triplon excitation gap Δt
in the vicinity of the quantum critical point. The QMC estimates,
obtained after a finite-size extrapolation, are shown by black
circles. The solid line is a fit to Eq. (2) of the data with
ðg − gcÞ=gc < 0.3, the dashed line indicates Gaussian theory
square-root scaling, and the dashed-dotted line the leading large-g
perturbative expansion result.

FIG. 3. Dynamical spin structure factor SSðω;QÞ at the order-
ing wave vector for different values of the coupling ratio g, as
obtained from QMC simulations with L ¼ 20, β ¼ 40=J. The
inset shows the ratio between the width (FWHM) and the position
ΔH of the second peak, where the estimated uncertainty is of
order the symbol size.
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for g ¼ 4.7). Also included in Fig. 1 is the field-theory
prediction [6,23] for the Higgs mass scaling ΔHðgÞ ¼ffiffiffi
2

p
ΔðgÞ, with ΔðgÞ ¼ Δt½gc þ ðgc − gÞ�. The extrapolated

peak positions closely follow this scaling prediction,
indicating that this second feature in SSðω;QÞ indeed
signals the amplitude mode of the bicube system. One
may compare this to the case of the two-dimensional
bilayer model, where the amplitude mode’s contribution
to the spin spectral function is masked by a broader tail
atop the Goldstone mode [19,26,40]. Here, in the three-
dimensional bicube system, we can clearly identify the
amplitude mode in the dynamical spin structure factor. This
observation is well in accord with the identification of a
broad amplitude mode and its softening near criticality in
the neutron scattering data [17,18] on TlCuCl3.
We can access the amplitude mode also from the

dynamical singlet structure factor SBðω; 0Þ. Because of
its scalar character, this quantity contains the amplitude-
mode signal without being masked by the low-energy
Goldstone modes [19,24–26]. This fact was employed in
Ref. [26] in order to access the amplitude mode for the two-
dimensional bilayer system. Here, we perform an analysis
of SBðω; 0Þ for the bicube model: Figure 4 shows SBðω; 0Þ
for various values of g. The amplitude mode dominates
SBðω; 0Þ as a pronounced low-energy peak that softens
upon approaching the quantum critical point. It is followed
by a second, broader peak at more elevated energies of
ω=J ≈ 7.5, which exhibits no such clear g dependence, and
thus does not relate to the critical low-energy spectrum.
From an extrapolation of the main peak’s position to the
thermodynamic limit, we extract the Higgs mass scaling in
the vicinity of the quantum critical point (this extrapolation
is also shown explicitly for g ¼ 4.7 in the inset of Fig. 1).
The resulting g dependence of the Higgs mass Δg is shown
in the main panel of Fig. 1. We find that the extrapolated

values of the main peak positions in SBðω; 0Þ agree
remarkably well with the extrapolated values for ΔH
obtained from SSðω;QÞ. Hence, both the low-energy peak
in SBðω; 0Þ as well as the finite energy peak in SSðω;QÞ
relate to the amplitude mode in the bicube system, with an
excitation energy that (i) softens upon approaching the
quantum critical point and (ii) exhibits a g dependence in
accord with the field-theory prediction, ΔH ¼ ffiffiffi

2
p

Δ [6,23].
Even though the line shape of the Higgs peak is

affected by the analytical continuation procedure, our
numerical results for the overall form of the Higgs peak
compare well to the low-energy scaling form SBðω; 0Þ ¼
Δdþz−2=νΦðω=ΔÞ of the scalar response function [41,42].
Indeed, at the mean-field level with ν ¼ 1=2, and for
dþ z ¼ 3þ 1, this simplifies to SBðω; 0Þ ¼ Φðω=ΔÞ,
which is in good accord with the overall collapse of the
Higgs peak signals shown in the inset of Fig. 4, in particular
in the low-ω section. This furthermore shows that the Higgs
peak sharpens upon approaching gc, with an only weakly g-
dependent ratio R between its width and the Higgs mass.
Within the accuracy that is available through the analytic
continuation scheme, we estimate this ratio from the inset
of Fig. 4 in terms of its full width at half maximum
(FWHM), to R ¼ 0.4ð1Þ. A roughly constant ratio between
the FWHM and the Higgs mass is also obtained for the
Higgs peak signal in the dynamical spin structure factor,
cf. the inset of Fig. 3. An approximately constant width-to-
gap ratio was also observed for TlCuCl3 [17,18] and
obtained within mean-field theory calculations [4]. On
the other hand, logarithmic corrections due to fluctuations
were shown in renormalization group calculations [42] to
eventually reduce the width-to-gap ratio towards zero upon
approaching gc in three-dimensional quantum critical
systems [21]. To observe this critical reduction in the
Higgs peak width for the bicube model, and to provide
comparable accuracy on the width as we obtained here for
the excitation gap, would require high-statistics simulations
closer to gc than those accessible here.
In summary, we presented robust evidence for logarith-

mic corrections to the leading mean-field scaling of the
triplon excitation gap softening near the quantum critical
point. We observed a distinct signal of the amplitude mode
in the spin and singlet spectral functions. This mode
furthermore softens and sharpens upon approaching the
quantum critical point, with an excitation gap that scales
consistently with a

ffiffiffi
2

p
ratio to the corresponding triplon

excitation energy. These findings close the gap between
the field-theoretical description of fundamental quantum
phase transitions and their experimental investigation in
three-dimensional dimerized antiferromagnets. Within the
accessed parameter region close to criticality, the width of
the Higgs peak scales essentially proportional to its mass.
Future work may aim at identifying the logarithmic reduc-
tion in the critical width-to-gap scaling of the Higgs peak to
a similar precision as provided here for the excitation gaps,

FIG. 4. Dynamical singlet structure factor SBðω; 0Þ for
different values of the coupling ratio g, as obtained from
QMC simulations with L ¼ 16, β ¼ 32=J. The inset shows a
collapse of the Higgs peak after rescaling of the ω axis by the
energy scale Δ ¼ ΔH=

ffiffiffi
2

p
.
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as well as consider thermal effects on the amplitude mode
and its dispersion relation in a similar quantitative form.
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