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Magnetic Skyrmions are swirling spin textures with topologically protected noncoplanarity. Recently,
Skyrmions with the topological number of unity have been extensively studied in both experiment and
theory. We here show that a Skyrmion crystal with an unusually high topological number of two is
stabilized in itinerant magnets at a zero magnetic field. The results are obtained for a minimal Kondo lattice
model on a triangular lattice by an unrestricted large-scale numerical simulation and variational
calculations. We find that the topological number can be switched by a magnetic field as 2 ↔ 1 ↔ 0.
The Skyrmion crystals are formed by the superpositions of three spin density waves induced by the Fermi
surface effect, and hence, the size of Skyrmions can be controlled by the band structure and electron filling.
We also discuss the charge and spin textures of itinerant electrons in the Skyrmion crystals which are
directly obtained in our numerical simulations.
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The discovery of topological invariants in electronic
states in solids has brought about innovation in modern
matter physics. For example, in the quantum Hall systems,
the Chern number, which is given by the Berry connections
of electron wave functions in momentum space, plays a
key role in understanding quantized Hall conductivity
[1,2]. Another example found in magnetic systems is the
Pontryagin number, which is defined as the integral of the
solid angles spanned by the neighboring three spins, for
characterizing the so-called magnetic Skyrmions [3–5].
The Skyrmion is a swirling noncoplanar texture origi-

nally introduced as a hypothetical particle in the baryon
theory [6]. Since the experimental discovery of a Skyrmion
crystal (SkX) in the magnetically ordered state in MnSi [3],
the magnetic analog of the Skyrmion has been extensively
studied for not only the nontrivial topology but also for
application to electronic devices [5,7–12]. The noncoplanar
spin texture in the SkX is described by a superposition of
three helical spin density waves [3,4], which is often
stabilized by competition between the ferromagnetic
exchange interaction and the Dzyaloshinskii-Moriya
(DM) interaction originating from the spin-orbit coupling.
Thus far, most of both experimental and theoretical

studies have been concerned with magnetic Skyrmions
with a minimal Pontryagin number nsk ¼ 1 (called the
topological number hereafter). This is because higher nsk
costs additional energy from larger relative angles between
neighboring spins when the ferromagnetic interaction is
dominant [13]. However, Skyrmions with any integer of nsk
are allowed in the topological sense, and rather desirable as
they can bring about richer physics. For example, larger
spin noncoplanarity can induce larger emergent electro-
magnetic fields for electrons, which may lead to larger
responses in unconventional transport phenomena, such as

the topological Hall effect [1,14–16]. Another advantage is
that high-nsk Skyrmions may allow the multiple digital
control of the topological numbers. Nevertheless, stable
high-nsk Skyrmions are very rare [17–19]. Moreover, the
underlying stabilization mechanism remains elusive for
high-nsk Skyrmions, especially in thermal equilibrium.
In this Letter, we report our theoretical discovery of a

thermodynamically stable high-nsk SkX. The result is
obtained for a minimal model for itinerant magnets, the
Kondo lattice model with classical localized spins, on a
triangular lattice, by using a sophisticated numerical
method [20] as well as variational calculations. We find
that the ground state shows a SkX with an unusual
topological number nsk ¼ 2 at a zero magnetic field, which
has different spin textures from the previously-reported
molecular-type bi-skyrmion [17]. Furthermore, we find
topological transitions with successive changes of nsk from
2 to 1, and to 0 in an applied magnetic field. Interestingly,
the size of Skyrmions can be controlled by the band
structure and electron filling, as the instability toward
the SkXs is induced by the Fermi surface effect. Our
simulation also provides the properties of itinerant elec-
trons in the SkXs, such as the electric current density, spin
polarization, and charge density.
We consider the Kondo lattice model on a triangular

lattice in a magnetic field. The Hamiltonian is given by

H ¼ −
X
i;j;σ

tijĉ
†
iσ ĉjσ − J

X
i

ŝi · Si − B
X
i

Szi ; ð1Þ

where the operator ĉ†iσ (ĉiσ) creates (annihilates) an
electron with spin σ at site i. The first term represents
the kinetic energy of itinerant electrons and tij is the
hopping integral between sites i and j. We consider the
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first- and third-neighbor hoppings, t1 and t3, respectively, in
the following calculations, while our results are expected to
hold for generic cases as discussed later. The second term
describes the s-d coupling between itinerant electron spins
ŝi ¼ ð1=2ÞPσσ0 ĉ

†
iσσσσ0 ĉiσ0 and localized spins with cou-

pling constant J, where σ is the vector of Pauli matrices. For
simplicity, we treat the localized spins as classical vectors
with unit length jSij ¼ 1 (the sign of J is irrelevant). The
third term denotes the Zeeman coupling to an external
magnetic field, which is taken into account only for
localized spins for simplicity. Hereafter, we take t1 ¼ 1
and a ¼ 1 (lattice constant) as the energy and length units,
respectively.
In the following, we examine the ground state of the

model Eq. (1) in the weak J region. In the limit of J → 0,
the perturbation in terms of J gives us an insight into
anticipated spin ordering. The lowest-order contribution is
in the order of J2, which is called the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [21–23]. The RKKY
interaction is proportional to the bare magnetic suscep-
tibility χ0q ¼ −T

P
k;ωn

G0
k;ωn

G0
kþq;ωn

; T is the temperature
and G0

k;ωn
is the bare Green function of itinerant electrons

with momentum k and Matsubara frequency ωn. This
apparently favors a helical spin ordering with the wave
number at which χ0q is maximized. In general, however, χ0q
has multiple maxima compatible with the lattice symmetry.
For instance, in the triangular lattice case, there are at least
three pairs of peaks reflecting the sixfold rotational
symmetry. In such situations, the RKKY energy is degen-
erate for the helical orders with the symmetry-related wave
numbers, and there arises a chance to have more compli-
cated spin structures by superpositions of the helices.
Indeed, a variety of such interesting spin textures has been
found for the model Eq. (1) on several lattices [24–30].
Among them, the authors and co-workers found that the
model Eq. (1) exhibits a noncoplanar vortex crystal
composed of a superposition of two helices as the generic
ground state in the weak J limit [31].
In this study, we explore further possibilities beyond the

perturbative regime. For this purpose, we adopt an unre-
stricted numerical method based on the kernel polynomial
method (KPM) and the Langevin dynamics (LD), which is
called the modified KPM-LD method [20,32,33]. This is
highly efficient, whose computational cost is linear in
the system size Ns, and enables us to treat large-scale
systems of Ns ¼ 104–105 by a massive parallel processing
on GPUs. In the simulation, we perform the Chebyshev
polynomial expansion up to M ¼ 2000 using 162 corre-
lated random vectors for the KPM and set the time interval
in updating Si, Δτ ¼ 2 in the LD for the systems
with Ns ¼ 962.
Figure 1(a) shows the spin configuration obtained by the

modified KPM-LD simulation at B ¼ 0 for the model with
t3 ¼ −0.85, J ¼ 1.0, and the chemical potential μ ¼ −3.5.

For the parameters, χ0q shows the peaks at commensurate
wave numbers, Q1 ¼ ðπ=3; 0Þ and Q2ð3Þ ¼ Rþð−ÞQ1,
where Rþð−Þ is a ð−Þ2π=3-rotation operator [34].
Remarkably, the optimal spin texture has a periodic array
of a vortex with vorticity v ¼ −2 centered at a downward
spin surrounded by six vortices (merons) with v ¼ 1.
This is, to our knowledge, the first example of stable

magnetic SkX with the topological number nsk ¼ 2 at a
zero magnetic field; here, nsk is defined by the sum of solid
angles spanned by neighboring localized spins over a
magnetic unit cell [35]. Experimentally, a molecule of
two bound Skyrmions, called a bi-skyrmion, was reported,
but it appears in a nonzero magnetic field and the spin
pattern is different [17]. It is, in general, hard to stabilize
SkXs in the absence of magnetic field, while metastable
ones were realized [36,37]. This is because most SkXs are
with nsk ¼ 1, in which spins at the hull of each Skyrmion
are aligned in parallel, carrying a net magnetization. In
stark contrast, our nsk ¼ 2 SkX has a spin configuration
compatible with vanishing magnetization: the vorticity-two
texture naturally results in a swirling but parallel spin
configuration on the opposite side of the hull, giving zero
net magnetization. The nsk ¼ 2 SkX spontaneously breaks
the chiral symmetry, while taking any value of the helicity
in ½0∶2πÞ [5].
We find that the nsk ¼ 2 SkX is well approximated by a

superposition of three spin density waves (triple-Q) as

Sðnsk¼2Þ
i ∝ ðcosQ1i; cosQ2i; cosQ3iÞ; ð2Þ

where Qνi ¼ Qν · ri (ri is the position vector for site i).
This state is regarded as the generalization of triple-Q states
discussed in the previous studies at particular electron
fillings [24,25]. In the previous cases, multiple-spin inter-
actions are important, which arise from higher-order
perturbation in terms of J than the RKKY interactions
[27,30]. In the present case of the nsk ¼ 2 SkX, we find that
similar high-order perturbative terms play a role, as dis-
cussed later.
In an applied magnetic field, the nsk ¼ 2 SkX turns into

another SkX, whose typical spin configuration is shown in
Fig. 1(b). This is similar to the well-studied SkX with
nsk ¼ 1, in which spins at the hull of each Skyrmion are
aligned parallel to the magnetic field. The nsk ¼ 1 state is
well described by

Sðnsk¼1Þ
i ∝

0
BB@

cosQ1i− 1
2
cosQ2i− 1

2
cosQ3iffiffi

3
p
2
cosQ2i−

ffiffi
3

p
2
cosQ3i

A1ðsinQ0
1iþsinQ0

2iþsinQ0
3iÞþ ~M

1
CCA

T

; ð3Þ

where Q0
νi ¼ Qνi þ ϕ and T denotes the transpose of the

vector; A1, ~M, and ϕ are the variational parameters. This is
also a triple-Q state: Sq has the peaks at q ¼ Q1, Q2, and
Q3 with the same intensity, in addition to the induced
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ferromagnetic component at q ¼ 0. This is again viewed as
a periodic array of a vortex with v ¼ −2 and six merons
with v ¼ 1, in a different manner from the nsk ¼ 2 SkX.
For a larger magnetic field, the spin state becomes

topologically trivial, i.e., nsk ¼ 0. The typical spin con-
figuration is shown in Fig. 1(c), which is well approximated
by another triple-Q state:

Sðnsk¼0Þ
i ∝

0
BB@

A0 cosQ1i þ A0
0 sinQ2i

A0
0 sinQ

0
1i − A0 cosQ0

2i

B0 cosQ00
3i þ ~M

1
CCA

T

; ð4Þ

where Q00
νi ¼ Qνi þ ϕ0; A0, A0

0, B0, ~M, ϕ, and ϕ0 are the
variational parameters. We note that the spin configuration
is different from those suggested in Refs. [19,38]. While
increasing the magnetic field, the triple-Q components
decrease and the nsk ¼ 0 state finally turns into a forced
ferromagnetic state with A0 ¼ A0

0 ¼ B0 ¼ 0 and ~M ¼ 1.
Figure 1(d) summarizes the changes of nsk and the

magnetization in localized spins per siteM ¼ jPiSij=Ns in

an applied magnetic field B. nsk shows the two discon-
tinuous changes: nsk ¼ 2 → 1 at Bc1 ∼ 0.00325 and nsk ¼
1 → 0 at Bc2 ∼ 0.0065. These are successive topological
transitions, similar to those characterized by the Chern
number in the quantum Hall systems [39]. At the same
time,M changes discontinuously at the critical fields, while
it grows almost linearly to B in each phase. Figure 1(e)
shows the B dependence of the grand potential per site,
Ω ¼ E − μn (E ¼ hHi=Ns is the internal energy per site
and n ¼ P

iσhĉ†iσ ĉiσi=Ns is the electron filling), obtained
by the modified KPM-LD simulation, in comparison with
those for Eqs. (2)–(4) with optimal variational parameters
[40]. We see that the variational states give sufficiently
precise energy in each B range. We emphasize that the
multiple digital changes of the topological number nsk ¼
2 ↔ 1 ↔ 0 are very unique, as usually the nsk ¼ 2 SkX is
hard to realize.
Let us discuss the energetics of the triple-Q SkXs

compared with the single-Q states. As mentioned earlier,
the RKKY interaction in the order of J2, in general, prefers

(d)

(a) (b) (c)

(e)

FIG. 1. Configurations of localized spins in (a) the nsk ¼ 2 SkX at B ¼ 0, (b) the nsk ¼ 1 SkX at B ¼ 0.005, and (c) the nsk ¼ 0
state at B ¼ 0.008. The gray hexagons in (a)–(c) represent the magnetic unit cell. (d) B dependences of jnskj and M obtained by the
modified KPM-LD simulation. (e) Grand potential Ω obtained by the modified KPM-LD simulation (red squares), in comparison to
those by the variational states for the nsk ¼ 2 SkX in Eq. (2) (blue solid lines), the nsk ¼ 1 SkX in Eq. (3) (green dashed lines), the
nsk ¼ 0 state in Eq. (4) (magenta dotted lines), and the single-Q conical state (gray solid lines) with optimal variational parameters
at each B. The modified KPM-LD results are obtained for the Kondo lattice model with t3 ¼ −0.85, J ¼ 1.0, and μ ¼ −3.5 on a
triangular lattice with Ns ¼ 962.
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a helical state at a zero field, which turns into a conical one
for a nonzero field, both of which are single-Q states
described by Si ∝ ðcosQνi; sinQνi; ~MÞ. The variational
energy is plotted by the gray curve in Fig. 1(e). Our
triple-Q SkXs have a lower energy than the single-Q state
by ∼10−3. This energy difference is comparable to a higher-
order term in the perturbation, ðJ=2Þ4S2Qν

, where SQν
∼ 1=6

is the spin structure factor for these SkX states. This
confirms that the SkXs are stabilized by the higher-order
contributions than the RKKY interactions. The details of
the perturbative arguments will be reported elsewhere [41].
In our simulation, we can directly obtain the electronic

and magnetic properties of itinerant electrons. It is
worth noting that the electronic properties are obtained
in a self-organized manner to optimize the grand
potential of the system. Figure 2 shows the real-space
distributions of (a) the local solid angle Ωp defined by
2Sp1

· ðSp2
× Sp3

Þ=fðP3
i¼1 Spi

Þ2 − 1g, where Spi
are three

spins on a triangular plaquette p in the counterclockwise
direction, (b) the local electric current density jνhi;ji ¼
ð1=2iÞPσhĉ†iσ ĉjσ − ĉ†jσ ĉiσi for a nearest-neighboring bond
hi; ji in the ν direction [see the inset of Fig. 2(b)], (c) the
length of itinerant electron spin si ¼ jhŝiij, and (d) the
local charge density ni ¼

P
σhĉ†iσ ĉiσi. Figures 2(a)–2(d)

[2(e)–2(h)] show the modified KPM-LD results for the SkX
with nsk ¼ 2 (1) at B ¼ 0 (0.005). Ωp is positive for all the
plaquettes and takes a 12-sublattice superstructure for the
nsk ¼ 2 SkX as shown in Fig. 2(a), while it shows a ferri-
type 48-sublattice superstructure for the nsk ¼ 1 SkX as
shown in Fig. 2(e). Reflecting the superstructures of Ωp,

itinerant electrons form periodic lattices of circular currents
surrounding the cores with small jΩpj plaquettes, as shown
in Figs. 2(b) and 2(f). At the same time, electrons show the
spin and charge density waves, as shown in Figs. 2(c), 2(d),
2(g), and 2(h); si and ni become larger in the region with
smaller jΩpj and larger jνhi;ji. All the quantities have the

threefold rotational symmetry, reflecting the spin textures
in Figs. 1(a) and 1(b) (the symmetry is weakly lowered in
Fig. 2, presumably due to the statistical fluctuations) [42].
It will be interesting to observe the peculiar electronic

properties by diffractions or local probes in experiments.
Furthermore, the spin and charge textures of itinerant
electrons are correlated with the localized spin textures
as shown in Fig. 2, suggesting the possibility of controlling
the magnetism through the electronic channels.
Finally, we discuss another peculiar property of our

SkXs. As the SkXs are stabilized by the Fermi surface
effect through the peak structure of χ0q, we can control the
Skyrmion size by the electron filling and band dispersion.
Qν are changed by μ and tij [34]. This may lead to a change
of the period of SkXs in a wide range. Indeed, we confirm
such a change by simulation. We note that, when the wave
numbers are close to the zone boundary, the system may
exhibit antiferromagnetic SkXs [43]. Thus, our SkXs
possess flexible controllability of the Skyrmion size and
the spin texture.
To summarize, we have theoretically discovered a SkX

with unusually high topological number nsk ¼ 2 by large-
scale unrestricted numerical simulation for the Kondo
lattice model on a triangular lattice. The SkX is stabilized
at T ¼ 0 even in the absence of DM interactions and an

(a) (d)(c)(b)

(h)(g)(f)(e)

FIG. 2. Real-space distributions of (a) the solid angle of localized spins Ωp on each plaquette, (b) the electric current density jνhi;ji on
each bond, (c) the spin length of itinerant electrons si at each site, and (d) the charge density ni at each site measured from the average
density for the nsk ¼ 2 SkX obtained by the modified KPM-LD simulation at B ¼ 0. (e)–(h) Corresponding data for the nsk ¼ 1 SkX at
B ¼ 0.005. The other parameters are the same as in Fig. 1. The gray hexagons in (a) and (e) represent the magnetic unit cell. The inset of
(b) shows the directions of the electric current densities, ν ¼ 1, 2, and 3.
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external magnetic field. We also have found that the system
exhibits unique successive topological transitions in an
applied magnetic field, with multiple digital changes of
nsk ¼ 2 → 1 → 0 and switching of itinerant electrons
textures, such as circular electric currents and spin-charge
density waves. Our discovery of the SkXs stabilized by the
Fermi surface effect may give insight into exotic spin
structures found in itinerant magnets, such as thin films on
transition metal substrates [44]. Moreover, the flexibility in
the multiple nsk, Skyrmion size, and helicity will be useful
in potential applications.
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