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We investigate the relationship between the Zeeman interaction and the inversion-asymmetry-induced
spin-orbit interactions (Rashba and Dresselhaus SOIs) in GaAs hole quantum point contacts. The presence
of a strong SOI results in the crossing and anticrossing of adjacent spin-split hole subbands in a magnetic
field. We demonstrate theoretically and experimentally that the anticrossing energy gap depends on the
interplay between the SOI terms and the highly anisotropic hole g tensor and that this interplay can be tuned
by selecting the crystal axis along which the current and magnetic field are aligned. Our results constitute
the independent detection and control of the Dresselhaus and Rashba SOIs in hole systems, which could be
of importance for spintronics and quantum information applications.
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The spin-orbit interaction (SOI) couples the spin of a
charged particle to its orbital motion, opening up the
possibility of using electric fields to manipulate spin-
related properties. This concept is central to the emerging
field of spintronics, where the ultimate goal is the develop-
ment of low-dissipation spin-based transistors and spin-
orbit qubits for quantum computation [1–4].
Hole systems in GaAs offer an attractive platform for

electrical spin control, due to the nonzero orbital angular
momentum in the valence band, where the heavy hole states
possess spin 3=2 [5]. When heavy holes are quantum
confined to a two-dimensional plane, there is a strong spin-
orbit interaction arising from inversion asymmetry in both
the crystal and the confinement potential—the Dresselhaus
SOI [6] and Rashba SOI [7,8], respectively. Quantifying
and controlling these interactions is of interest for hole spin
qubits [9,10], while an appropriate tuning of the Rashba
and Dresselhaus terms allows the formation of long-lived
persistent spin-helix states [11,12]. However, although it
has been possible to disentangle the effects of the Rashba
and Dresselhaus interactions in electron systems [13], there
has yet to be any demonstration of the independent
measurement and control of these interactions in hole
systems despite a number of theoretical proposals [14,15].
In this work, we study the Rashba and Dresselhaus

interactions in a hole system. We are able to separate the
influence of the two interactions by comparing their effect on
the Zeeman spin splitting of 1D hole subbands in GaAs
quantum point contacts on different crystal planes.While the
Rashba SOI is approximately independent of the crystal
plane, the Dresselhaus SOI has a strong crystal dependence.
The strength and nature of the Rashba and Dresselhaus
interactions controls the magnitude of the anticrossings as

adjacent 1D hole levels approach each other when an in-
plane magnetic field is applied. We find that the Rashba SOI
is much stronger than the Dresselhaus SOI on (100) sub-
strates, but the two are comparable on (311) substrates.
Additionally, we show that it is possible to control the
strength of the Dresselhaus SOI by changing the quantum
point contact (QPC) quantization axis (current direction).
Our results are consistent with a theoretical model that
incorporates crystal anisotropies, where the anticrossing
gap arises as a result of the Dresselhaus and Rashba SOIs
and the tensor structure of the anisotropic hole g factor.
The devices used in this work are fabricated from two

GaAs/AlGaAs accumulation mode heterostructures [16],
one of which is grown on the high-symmetry (100) plane
and the other on the low-symmetry (311)A plane. The 2D
hole system (2DHS) on both heterostructures is formed in
an approximately triangular confinement potential, where
the large electric field results in a strong Rashba SOI.
The 2DHS, which has a density of p ∼ 1.5 × 1011 cm−2, is
further confined using 400 × 400 nm split gates to form a
QPC. The (311) device has two orthogonal QPCs along
the [2̄33] and [011̄] crystal directions, which we label
QPC½2̄33� and QPC½011̄�, as shown in Fig. 1. The (100)
device also has two orthogonal QPCs, oriented along [011]
and [011̄]. Because of the high symmetry of the (100)
plane, both of these QPCs show identical results [17], so
only the QPC oriented along [011] (labeled QPC[011]) is
used for this work.
Measurements were carried out in a dilution refrigerator,

with a base temperature below 40 mK, using standard ac
lock-in techniques. Conductance traces for all three QPCs,
exhibiting characteristic 1D quantized plateaus as a func-
tion of side gate voltage VSG, are shown in Figs. 1(a)–1(c).
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The first subband shows anomalous features which may be
due to the 0.7 structure [18–20], which will be studied in
detail elsewhere.
Zeeman splitting of 1D hole subbands in an in-plane

field was measured for all three QPCs and is presented in
Figs. 1(d)–1(f). The experimental data are presented as
color plots of the transconductance ∂G=∂VSG, where light
regions represent high transconductance, corresponding
to the 1D subband edges. Figure 1(d) depicts the simplest
case of QPC[011] on the (100) plane, with the magnetic
field applied parallel to the current, along [011]. The 1D
subbands show linear spin splitting at low fields and then
exhibit crossings at higher fields when the spin splitting
becomes larger than the 1D subband spacing [17,21–23].
These crossings indicate that there is no coupling between
adjacent 1D subbands.
Now we turn to the more interesting case of the (311)

device: Here, the magnetic field was applied along ½2̄33�.
In Fig. 1(e), QPC½011̄� also shows linear spin splitting at

low fields. However, at higher fields, adjacent subbands
show weak anticrossing behavior (clearly visible for sub-
bands 4–6), suggesting mixing between adjacent 1D states
of opposite spin. Finally, for QPC½2̄33� [Fig. 1(f)], the
anticrossing is very strong and clearly visible between all
subbands.
We note that both the 2D and 1D confinement potentials,

and hence the Rashba SOI, are nearly identical for the
QPCs on the (100) and (311) heterostructures. Therefore,
the different anticrossing behavior in Figs. 1(d)–1(f) must
be due to the differing Dresselhaus SOI and Zeeman terms.
To confirm the role of the Dresselhaus interaction, we

model the system using an effective Hamiltonian approach,
describing only the ground heavy hole subband. The
influence of higher subbands is accounted for via the
perturbation theory up to the second order of the in-plane
momentum k.
The simple case of a QPC on the (100) plane is considered

first. Using the coordinate system ðx; y; zÞ ¼ ð½011�;
½011̄�; ½100�Þ, the effective Hamiltonian is

H½100� ¼ k2=ð2m�Þ þ Uðx; yÞ − Bx

2
gxxσx

−
By

2
gyyσy −

iα
2
ðk3þσ− − k3−σþÞ: ð1Þ

The first term is the hole dispersion within the effective mass
approximation, with m� ¼ 0.2me. The second term is the
parabolic 1D confining potential of the QPC. The third and
fourth terms are the Zeeman terms for 2D holes in an in-plane
magnetic field. The fifth term is the Rashba SOI [5]. The
Dresselhaus SOI is negligibly small in the (100) plane and is
ignored here (see Supplemental Material [24] and Ref. [30]
for a description of the Rashba and Dresselhaus SOI).
For QPC[011], we define [011] as x̂. We set the

momentum along the channel kx to 0 (since we measure
spin splitting at the 1D subband edges). The Rashba term
then simplifies to −αk3yσx. When the magnetic field is also
applied along [011], the Zeeman term Bxgxxσx is parallel to
the Rashba term, so anticrossings are prohibited [21].
Next we consider the case of an orthogonal QPC along

the ½011̄� (y) direction with the field applied perpendicular
to the QPC; i.e., Bx is applied along [011]. In this case, we
set ky to 0, and the remaining odd-momentum terms in the
effective Hamiltonian in Eq. (1) are considered as a small
perturbation that takes the following form:

V ¼ −αk3xσy: ð2Þ

This perturbation (arising from the Rashba SOI) would lead
to an anticrossing of states from adjacent 1D subbands with
different spin orientations. However, for (100) QPCs, an in-
plane field applied perpendicular to the QPC does not cause
the 1D levels to split (g�⊥ ≃ 0) [17,21,23], so anticrossings
have never been observed.

FIG. 1. The top panel shows schematic diagrams of the crystal
orientation of the QPCs and the applied magnetic field. (a)–(c)
Conductance G versus VSG for the three QPCs, showing
characteristic 1D conductance plateaus. (d)–(f) Zeeman splitting
of 1D subbands in an in-plane magnetic field for all three QPCs.
Color plots of the transconductance ∂G=∂VSG are shown, where
the light regions represent the 1D subband edges. (d) shows
results for the (100) device where there is a linear Zeeman
splitting with clear crossings between adjacent 1D subbands. (e)
and (f) show results for the (311) device: In (e), the QPC is
parallel to ½011̄�, and anticrossing between adjacent 1D subbands
is present but weak. In (f), the QPC is parallel to ½2̄33�, and strong
anticrossings are observed.
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To obtain a finite g�⊥, we now turn to theQPCs on the (311)
heterostructure. Here the effective Hamiltonian contains an
additional Zeeman term due to the off-diagonal component
of the g tensor, gxz [31–33], and an additional Dresselhaus
term D1 (see Supplemental Material [24]). Taking the
coordinate system ðx; y; zÞ ¼ ð½2̄33�; ½011̄�; ½311�Þ, the effec-
tive Hamiltonian is now

H½311� ¼ k2=ð2m�Þ þUðx; yÞ − Bx

2
ðgxzσz þ gxxσxÞ

−
By

2
gyyσy −

iα
2
ðk3þσ− − k3−σþÞ −D1kyσz: ð3Þ

We start with the QPC parallel to the ½011̄� (y) direction
and set ky ¼ 0. As before, the odd-momentum terms take
the form of Eq. (2) when the magnetic field is applied
perpendicular to the QPC; i.e., Bx is applied along ½2̄33�. In
this case, the corresponding spinors j�i should be eigen-
vectors of the matrix G ¼ gxzσz þ gxxσx according to
Eq. (3). The anticrossing gap between the nth and
(nþ 1)th subbands is then

ΔðnÞ ¼ 2jαhk3xij; ð4Þ

where h…i ¼ hnj…jnþ 1i. This gap (of the order of
∼100 μeV [24]) appears solely due to the Rashba coupling
constant, since the D1 Dresselhaus contribution vanishes
when ky ¼ 0.
Finally, we consider the QPC parallel to the ½2̄33� (x)

direction and set kx to 0. In this case, the Dresselhaus SOI is
preserved and the odd-momentum correction takes the form

V ¼ −αk3yσx −D1kyσz: ð5Þ

If the magnetic field Bx is again applied along ½2̄33�, the
anticrossing gap now becomes

ΔðnÞ ¼ 2

�
�
�
�
αhk3yi

gxz
g

−D1hkyi
gxx
g

�
�
�
�
; ð6Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2xx þ g2xz
p

is the total g factor. In the limit
k ¼ 0, gxz and gxx have different signs [31], and the
Rashba and Dresselhaus terms in (6) add constructively.
Anticrossing gaps for this case are predicted to be
approximately 2 times greater than for QPC ∥½011̄�, due
to the additional D1 Dresselhaus contribution, which is
of a similar magnitude to the Rashba term for the (311)
plane [24].
We now use Eqs. (1)–(6) to produce a simple qualitative

picture of the Zeeman spectrum of the three QPCs,
presented in Fig. 2. The lines show the evolution of the
1D subbands as a function of the magnetic field. For
simplicity, we neglect subband dependence of the g tensor
and the intersubband spacing [32], to show that the
variation in the anticrossing gap between the three QPCs

arises solely due to the differing coupling between the SOI
and Zeeman terms. Details of the calculations are given in
Supplemental Material [24].
The calculated energy spectrum shows no anticrossing for

QPC[011] on the (100) plane [Fig. 2(a)], since there is no
interaction between adjacent subbands. For QPC½011̄� on the
(311) plane [Fig. 2(b)], small anticrossing gaps appear due
to the Rashba SOI. Finally, for QPC½2̄33� [Fig. 2(c)], large
anticrossings occur due to the combination of theRashba and
Dresselhaus SOI. Figures 2(b) and 2(c) also predict that the
anticrossing energy gaps increase with the subband index,
due to the dependence on hk3i in Eqs. (4) and (6) (see
Supplemental Material [24]), which is qualitatively consis-
tent with the data in Figs. 1(d)–1(f). Overall, the theoretically
predictedZeeman spectrum is remarkably consistentwith the
experimental data, suggesting that the experimental values
of the Rashba and Dresselhaus constants are close to the
theoretical values of α ≈ 400 eVÅ3 and D1 ≈ 28 meVÅ
used in the calculations [24].
The large anticrossing gap observed for QPC½2̄33� is

evidence for the strong Dresselhaus SOI in (311) GaAs
hole systems. Furthermore, the results in Figs. 1(e) and 1(f)
also show that the effect of the Dresselhaus SOI can be
independently switched on or off in a QPC by selecting the
quantization axis (current) direction. Control of the SOI is
of interest for potential applications to hole-based spin
qubits, suppression of spin relaxation, and formation of
spin helix states [9–12].
Finally, to complete the characterization of both SOI

terms and their interplay with the Zeeman spin splitting, we
also investigate the other two magnetic field directions: The
other orthogonal in-plane field direction (By) is considered
in Supplemental Material [24], and the out-of-plane

FIG. 2. Zeeman spectrum calculated using Eqs. (1)–(6) for the
three QPC orientations. The magnitude of the anticrossing
gaps for the three QPCs are in qualitative agreement with the
corresponding experimental data in Figs. 1(d)–1(f). The 1D
subband spacing is 0.25 meV, gxz ¼ 0.75, gxx ¼ gyy ¼ −0.5,
Rashba coupling α ¼ 400 eVÅ3, and Dresselhaus coupling
D1 ¼ 28 meVÅ [24].
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magnetic field direction (Bz) is discussed in the following
paragraphs.
Figure 3 shows transconductance data with an out-of-

plane field Bz, applied along [311] for QPC½2̄33�. As
expected for this field direction, the data show a very large
Zeeman splitting due to the large gzz term and an upward
curvature of the subbands due to additional magnetic
confinement (see Supplemental Material of Ref. [32] and
[21,22]). We also see evidence for an anticrossing between
1D levels shown by the blue arrows. For the (311) plane,
the anticrossing in an out-of-plane field is analogous to that
which occurs in an in-plane field: When the field is applied
along [311] (z) instead of ½2̄33� (x), the corresponding
Zeeman term Bzgzzσz plays the same role as the Bxgxzσz
term in Eq. (3).
We can therefore very simply derive the expected

anticrossing gap for a general tilted field in (311) GaAs:
Let us consider QPC½2̄33� in a magnetic field applied in the
xz plane, where ðx; y; zÞ ¼ ð½2̄33�; ½011̄�; ½311�Þ:

Bx ¼ B cosϕ; Bz ¼ B sinϕ: ð7Þ
Here the angle ϕ is assumed to be fixed. A magnetic field
along [311] (z) gives an additional Zeeman term to the
effective Hamiltonian in Eq. (3): −gzzBzσz=2. The resulting
effective Hamiltonian is similar to (3) if we substitute

gxx → gxx cosϕ; gxz → gxz cosϕþ gzz sinϕ: ð8Þ
The corresponding anticrossing gaps are given by

Eq. (6), where gxx and gxz are substituted according to
(8). Note that, for an out-of-plane field, the off-diagonal gxz
term is not required to produce the anticrossing. Therefore,

in the presence of a Rashba SOI, an anticrossing in an out-
of-plane magnetic field should occur for any QPC ori-
entation, fabricated on any crystal plane, including the
high-symmetry (100) plane [21].
In conclusion, Zeeman splitting measurements of 1D

subbands were carried out for three hole QPCs on the high-
symmetry (100) plane and the low-symmetry (311) plane of
GaAs. For the QPCs on the (311) plane, a strong anti-
crossing of 1D subbands was observed in an in-plane field.
We presented a theoretical framework showing that these
anticrossings occur due to the interplay between the SOI
terms (Rashba and Dresselhaus) and the off-diagonal hole g
tensor. Our experiment demonstrates the independent
detection and control of the Dresselhaus SOI and provides
new insights into spin-orbit effects in quantum confined
hole systems.
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