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Beryllium (Be) is an important material with wide applications ranging from aerospace components to
x-ray equipment. Yet a precise understanding of its phase diagram remains elusive. We have investigated
the phase stability of Be using a recently developed hybrid free energy computation method that accounts
for anharmonic effects by invoking phonon quasiparticles. We find that the hcp → bcc transition occurs
near the melting curve at 0 < P < 11 GPa with a positive Clapeyron slope of 41� 4 K=GPa, which is
more consistent with recent experimental measurements. This work also demonstrates the validity of this
theoretical framework based on the phonon quasiparticle to study the structural stability and phase
transitions in strongly anharmonic materials.
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Resolving phase boundaries is challenging for both
experimentation and theory given the uncertainties from
several sources, especially at very high pressure (P) and
high temperature (T). Beryllium (Be) is a typical system
whose phase diagram remains an open problem despite
intense investigations. It assumes a hexagonal close-packed
(hcp) structure at relatively low T [1]. However, unlike
other metal systems [2], the stability of the body-centered
cubic (bcc) phase at high T and the associated hcp/bcc
phase transition are not well understood yet. Be is impor-
tant for both fundamental research [3–6] and practical
applications. Being a strong and light-weight metal, it has
been widely used in a broad range of technological
applications in harsh environments and extreme PT con-
ditions, e.g., up to T > 4000 K and P > 200 GPa [7–11].
Equipped with the diamond anvil cell technique coupled

with x-ray diffraction, recent experimental efforts have
made significant progress in understanding the structure
and phase stability of Be [12–18]. Lazicki et al. [12]
conducted a systematic study of Be covering wide PT
ranges: 8 < P < 205 GPa and 300 < T < 4000 K [12].
There are also several other experiments conducted at
ambient temperature for pressures up to 200 GPa
[13,17]. In these measurements, no sign of bcc symmetry
was ever captured. In addition, a report from Evans et al.
indicates that there is no bcc Be for the pressure range of
15 < P < 50 GPa for temperatures up to 2000 K (see
Ref. [19] for the associated discussion). These experimental
evidences hint that bcc Be is likely to be a high-temperature
phase within a narrow pressure region at relative low
pressures, if it exists at all. Indeed, bcc Be was observed
[20] only at T > 1500 K around ambient pressure before

melting (the melting temperature at ambient pressure
TM ∼ 1550 K). A similar result was reported by Abey
[21] by using a differential thermal analysis, where the hcp/
bcc phase boundary between 0 < P < 2.5 GPa is quite
near the melting line. On the contrary, through temperature-
dependent resistance, Francois and Contre inferred that the
hcp/bcc phase boundary between 0 < P < 6 GPa has a
negative Clapeyron slope (−52� 8 K=GPa) [22].
According to experimental measurements made by
Lazicki et al. [12] and others [13,17], this result, however,
no longer holds. On the theory side, the study of Be’s phase
diagram using conventional methods encounters significant
difficulties. The lattice dynamics of bcc Be is highly
anharmonic, and the widely used quasiharmonic approxi-
mation (QHA) and Debye model are not able to capture
such an effect [19,23–28]. For this reason, the theoretical
study of bcc Be and the associated hcp/bcc phase transition
is missing for P < 11 GPa (density< 2.1 g=cc) where bcc
Be is dynamically unstable at 0 K [24]. At P > 11 GPa,
bcc Be is dynamically stabilized by pressure, and the QHA
might, in principle, be applied. However, the hcp/bcc
boundary [23–25] predicted by the QHA does not agree
with experiments [12], suggesting that anharmonic effects
still play an important role at higher pressures.
In this Letter, we report a new investigation of the phase

stability of bcc Be and the associated hcp → bcc phase
transition boundary up to 30 GPa and temperatures up to
2000 K. We have used a recently developed hybrid
approach [29,30] that combines first-principles molecular
dynamics (MD) and lattice dynamics calculations to
address anharmonic effects in the free energy. In this
method, the concept of phonon quasiparticles offers a
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quantitative characterization of the effects of lattice anhar-
monicity [31,32]. We show that Be exhibits pronounced
anharmonic effects in both the bcc and hcp phases.
Specifically, our results reveal the dynamical stabilization
of bcc Be with increasing T. The bcc phase, however, is
favorable only in a narrow temperature range near TM,
with the hcp → bcc phase boundary having a positive
Clapeyron slope of 41� 4 K=GPa. The bcc stability field
shrinks with increasing pressure and eventually disappears
at around 11 GPa. This result agrees overall with experi-
ments [12–18,20,21] and differs from other hcp/bcc phase
boundaries (e.g., Mg [33]), usually displaying a negative
Clapeyron slope.
In the present approach, phonon quasiparticles are

numerically characterized by the mode-projected velocity
autocorrelation function [29,30]:

hVð0Þ ·VðtÞiq;s¼ lim
t0→∞

1

t0

Z
t0

0

V�
q;sðt0Þ ·Vq;sðt0 þ tÞdt0; ð1Þ

where Vq;sðtÞ ¼
P

N
i¼1

ffiffiffiffiffiffi
Mi

p
vðtÞ · ϵ̂iq;s expðiq ·RiÞ is the

mode-projected and mass-weighted velocity for normal
mode (q, s) with wave vector q; viðtÞ (i ¼ 1;…; N) is the
atomic velocity produced by first-principles MD simula-
tions with N atoms, andMi andRi are the atomic mass and
coordinate of atom i, respectively. ϵ̂iq;s (i ¼ 1;…; N) is the
polarization vector of normal mode (q, s) calculated using
the density functional perturbation theory (DFPT) [34]. For
a well-defined phonon quasiparticle, the velocity autocor-
relation function displays an oscillatory decaying behavior,
and its Fourier transform, i.e., the power spectrum,

Gq;s ¼
Z

∞

0

hVð0Þ · VðtÞiq;s expðiωtÞdt; ð2Þ

should have a Lorentzian-type line shape [29,30]. The
renormalized phonon frequency ~ωq;s and the linewidth Γq;s

can then be obtained as discussed in more details in
Supplemental Material [35].
The concept of the phonon quasiparticle reduces the

complex problem of interacting anharmonic phonons to an
effective noninteracting system [31], such that the conven-
tional kinetic gas model and, to a great extent, the theory of
harmonic phonons are still applicable. Moreover, since a
structural phase transition is triggered by lattice vibrations
for many cases, insight into the transition mechanism can
be also obtained by monitoring the variation of frequencies
and linewidths of phonon quasiparticles.
We used the Vienna ab initio simulation package (VASP)

[36,37] to carry out first-principles MD simulations on
4 × 4 × 4 supercells (128 atoms) of Be. We used the
generalized gradient approximation of Perdew, Burke,
and Ernzerhof [38] and the projector-augmented wave
method [39] with an associated plane-wave basis set energy
cutoff of 350 eV. For metallic Be, the finite-temperature
Mermin functional [40,41] was used. Simulations were

carried out at a series of volumes (V): 6.21 < V <
8.71 Å3=atom for bcc Be and 6.35 < V < 8.83 Å3=atom
for hcp Be. For hcp Be, the proper aspect ratio (c=a) is
adopted to obtain good hydrostatic conditions for the
specific volume and temperature. Temperatures ranging
from 300 to 2800 K are controlled through the Nosé
dynamics [42]. The considered volumes and temperatures
result in a pressure range of 0 < P < 30 GPa. For each
volume and temperature, multiple independent MD runs
(five parallel replica) were performed to improve phase
space sampling quality that also allow for the evaluation of
statistical uncertainties. Each MD run lasted 50 ps and used
a time step of 1 fs. Harmonic phonon frequencies and
normal modes were calculated using the DFPT [34].
Before proceeding, we should clarify the general under-

standing of the hcp → bcc transition. The low T and low P
hcp structure relates to the bcc structure through the zone
center transverse optical (TO) mode and a macroscopic
strain. This mode consists of opposite displacements of
neighboring (0001) planes along h1010i and softens with
increasing T. This is not necessarily a soft mode transition
but generally a first-order transition with a negative
Clapeyron slope [33]. The (0001) plane transforms into
the (110) plane of the bcc phase. This picture was validated
by an early variable cell shape molecular dynamics
study [43]. The opposite bcc → hcp transition involves
the lowest transverse acoustic mode (TA2) at q ¼ ½1=2;
1=2; 0�, the N point of the Brillouin zone, marked by an
open circle in Fig. 2(a). With this in mind, we monitor
closely the behavior of these modes with changing T.
We first investigate the behavior of phonon quasipar-

ticles at different temperatures. For bcc Be, phonon
quasiparticles are not well defined at low T as found in
other systems [31] but recovered at high T for unstable
(soft) modes e.g., TA2. The analysis of this mode is shown
in Fig. S2 of Supplemental Material [35]. It is more
interesting to notice that, at low T, phonon quasiparticles
are not well defined even for certain stable modes with
positive harmonic frequencies. Figure 1 shows hVð0Þ ·
VðtÞiq;s and the corresponding power spectra of the TA1
phonon mode at N calculated at 400 [Fig. 1(a)] and 1000 K
[Fig. 1(b)]. This mode is marked by an open square in
Fig. 2(a). Although hVð0Þ · VðtÞiq;s at 400 K displays an
oscillatory behavior, the amplitude decay is nonmonotonic
[Fig. 1(a)]. Consequently, the power spectrum has two
major peaks within the shaded area as shown in Fig. 1(c).
This indicates that the frequency of this mode cannot be
well constrained, or, equivalently, the corresponding
phonon quasiparticle is not well defined. In contrast, at
1000 K, hVð0Þ · VðtÞiq;s exhibits a nicely decaying oscil-
latory behavior [Fig. 1(b)]. The corresponding power
spectrum now has a well-defined Lorentzian line shape
with a single and well-defined peak [Fig. 1(d)]. It is thus
straightforward to identify the renormalized frequency of
this mode as 16.8 THz. Similarly, all other quasiparticle
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mode frequencies sampled by the 4 × 4 × 4 supercell are
equally well defined. As previously indicated [29,30], these
renormalized phonon frequencies plus the normal modes
enable the calculation of the renormalized force constant
matrix and complete phonon dispersions. This quantitative
characterization of phonon quasiparticles and renormalized
phonon dispersion provide a solid foundation for studying
thermal properties.
Figure 2(a) compares the anharmonic phonon dispersion

of bcc Be at 1000 K with the harmonic phonon dispersion
calculated using the DFPT. Results are obtained at the static
equilibrium volume of bcc Be, 7.81 Å3=atom. There are
noticeable differences between the anharmonic and har-
monic phonon dispersions. In particular, the unstable (soft)
TA2 branch along the Γ − N line stabilizes when high-
temperature anharmonic effects are accounted for. This
indicates that bcc Be is stabilized by anharmonic effects. To
gain further insight into anharmonic effects, we analyze
T-dependent phonon frequency shifts. Figure 2(c) shows
that the frequency of the bcc zone edge phonon mode at
q ¼ N associated with the TA2 branch calculated at a fixed
volume varies nonlinearly with T. The lowest-order many-
body perturbation theory [45] predicts a linear frequency
shift with T. Therefore, as expected, higher-order anhar-
monic effects ignored in the perturbative treatment play an
important role here.
The calculated anharmonic phonon dispersion over the

whole Brillouin zone makes it possible to calculate the free
energy in the thermodynamic limit (N → ∞). Since hcp Be
is stable at low T for the entire pressure range of interest,
the lattice thermal properties have been studied within the
QHA [23–25] without further examination of the validity of
the approximation. This naturally brings up a question:
How important are anharmonic effects in the free energy in

this seemingly stable structure? Figure 2(b) compares the
anharmonic phonon dispersion at T ¼ 1000 K and the
harmonic phonon dispersion of hcp Be calculated at a fixed
volume of 7.89 Å3=atom corresponding to zero static
pressure. The differences, although not alarming, are still
significant in most of the Brillouin zone. A detailed
analysis of individual phonon modes in Supplemental

FIG. 1. Mode-projected velocity autocorrelation functions of
the TA1 acoustic mode (q, s) at q ¼ N with a harmonic frequency
of 18.2 THz of bcc Be at (a) 400 and (b) 1000 K, respectively. (c)
and (d) show the corresponding power spectra. In (c), the shaded
area between 16.2 and 17.6 THz covers two major peaks,
indicating the breakdown of the phonon quasiparticle picture.
In (d), the vertical dashed line at 16.8 THz indicates the frequency
of the well-defined phonon quasiparticle.

FIG. 2. (a) Anharmonic phonon dispersion at 1000 K (blue
solid curves) and harmonic phonon dispersion calculated using
the DFPT (gray dashed curves) both at V ¼ 7.81 Å3=atom, the
static bcc Be equilibrium volume. The two transverse branches
are labeled TA1 and TA2, respectively. (b) Anharmonic phonon
dispersion calculated at 1000 K (blue solid curves) and harmonic
phonon dispersion calculated using the DFPT (gray dashed
curves) both at V ¼ 7.89 Å3=atom, the static hcp Be equilibrium
volume. The experimental data are shown for comparison [44].
(c) Temperature-dependent frequency shifts of the TA2 q ¼ N
mode [open circle in (a)] and of the TO q ¼ Γ mode [open circle
in (b)] calculated at constant volume and (d) at constant zero
pressure. The procedure to convert from constant volume to
constant pressure was described in Ref. [29]. The vertical dashed
line in (d) indicates the hcp/bcc transition temperature.
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Material [35] reveals that the frequency shifts with
increasing T can be positive, negative, or nearly zero,
demonstrating the complexity of lattice anharmonic effects.
What is important here is that the large frequency shifts in
hcp Be should be incorporated into the free energy
calculation for more accurate evaluations of thermody-
namic properties and phase boundaries.
The large frequency shifts not only reveal pronounced

anharmonic effects but also shed light on the microscopic
mechanism of this phase transition. As mentioned earlier,
the hcp and bcc structures are related by a combination of
phonon displacements and a macroscopic strain [46].
Together, they provide a path for the hcp → bcc transition.
The frequency of the zone center TO mode drops signifi-
cantly from 14.2 to 12.3 THz when T increases from 0 to
1600 K [see Fig. 2(c)]. This observation is consistent with
expectations based on the anticipated transformationmecha-
nism [33,43,47]. We note that, although the frequency shift
is very large at 1600K, the picture of phonon quasiparticle is
still valid for the hcp phase (see Supplemental Material [35]
for a detailed analysis). As mentioned earlier, from the
Brillouin zone-folding relation, the corresponding mode in
bccBe is the zone edge TA2mode atq ¼ N, whose property
is shown in Figs. 2(c) and 2(d).
We now demonstrate that anharmonic effects are critical

for obtaining this hcp → bcc phase boundary. When using
anharmonic T-dependent phonon dispersions, the QHA
free energy formula is no longer valid, whereas the entropy
formula is still applicable [48]. Therefore, we first calculate
the vibrational entropy [29,31]

Svib ¼ kB
X
qs

½ðnqs þ 1Þ lnðnqs þ 1Þ − nqs ln nqs�; ð3Þ

with nqs ¼ ½expðℏ ~ωq;s=kBTÞ − 1�−1, and obtain the total
free energy as

FðV; TÞ ¼ FðV; T0Þ −
Z

T

T0

SðT 0ÞdT 0; ð4Þ

where T0 is 1000 K and S is the total entropy including both
vibrational and electronic contributions (see Supplemental
Material [35] for more details). Our analysis of phonon
quasiparticles demonstrates that they are well defined for
both phases for T ≥ 1000 K, therefore the choice of T0.
FðV; T0Þ ¼ EðV; T0Þ þ T0SðV; T0Þ, where EðV; T0Þ is the
internal energy obtained from theMD simulation. Figure 3(a)
displays the calculated free energies for both bcc and hcp
phases. It is seen that, at T ≥ 1200 K, Vbcc > Vhcp, and,
consistently, the common tangent to thesecurves starts to have
a negative slope, indicating a transition from hcp to bcc at a
positive pressure. We note that the volumetric variations of
both phases also provide clues to understand the predicted
hcp/bcc transition at very high P (e.g., 400 GPa) [23–25].
More details of the variation of Vbcc and Vhcp is shown in
Fig. S6 in Supplemental Material [35].

It is more convenient to convert FðV; TÞ into GðP; TÞ ¼
FðV; TÞ þ PðV; TÞV to obtain the phase boundary (see
Supplemental Material [35] for details). Figure 3(b) dis-
plays GðP; TÞ for both bcc and hcp phases. At each P, the
intersection of Gbcc and Ghcp gives the hcp/bcc transition
temperature. The resulting hcp → bcc phase boundary
shown in Fig. 4, together with the predicted or measured
melting line, reveals several important aspects. (i) bcc Be is
stable only when T approaches the melting point
(TM ∼ 1550 K at ambient pressure), and the hcp → bcc
phase transition occurs only in a narrow pressure range of
0 < P < 11� 2 GPa. The uncertainty in the transition

FIG. 3. (a) Free energy FðV; TÞ versus volumes of Be for bcc
(solid symbols) and hcp (opened symbols) phases at different
temperatures. (b) Free energy GðP; TÞ versus the temperature of
Be for bcc (solid lines) and hcp (dashed lines) phases at different
pressures. In (a) and (b), the error bars are too small to be visible.

FIG. 4. Phase diagram of Be. The shaded area indicates the
uncertainty of our predicted hcp/bcc boundary. The melting line
is adopted from Robert, Legrand, and Bernard [24]. The
measured hcp/bcc phase boundary (solid line [21]) and the
experimental point for bcc Be (open square) [20] are shown
for comparison. The inset summarizes the phase diagram of Be as
predicted by previous theoretical studies: hcp=bcc1 and the
pocket at a relative low-pressure zone [24] and hcp=bcc2 [19].
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pressure can be understood from the uncertainties of the
calculated free energy. From the five parallel replica of
BOMD simulations, five different renormalized phonon
frequencies ~ωq;s are obtained, enabling the estimation of
uncertainty of ~ωq;s and thus the uncertainty in the free
energy ΔFvib. For example, ΔFvib ≈ 3.5 meV=atom in bcc
Be at 2000 K with a volume of V ¼ 7.81 Å3=atom. The
non-negligible ΔFvib for both hcp and bcc phases brings
out an uncertainty in the hcp/bcc phase boundary. At
P ¼ 11 GPa, this uncertainty is about �2 GPa. A detailed
analysis of the phase boundary uncertainty is shown in
Supplemental Material [35]. We indicate that the obtained
transition pressure range within uncertainty is consistent
with recent experimental measurements [12,14–18]. For
example, Lazicki et al. [12] inspected the structure of Be
for high pressure P ¼ 205 GPa at temperatures up to
4000 K and for low pressure down to P ¼ 8 GPa at
temperatures up to 1225 K and found no sign of bcc
Be. Our results are also in agreement with an earlier
experiment where bcc Be was observed at T > 1500 K
[20] at ambient pressure. Here it is worth noting that this
measurement [20] might not be of sufficient accuracy due
to the impurities contained in the samples. (ii) The hcp/bcc
phase boundary has a positive Clapeyron slope of
41� 4 K=GPa, as recently suggested [12]. Besides, our
predicted Clapeyron slope is close to the experimental
value (43� 7 K=GPa) reported by Abey [21]. We note that
Abey indicated that the hcp/bcc boundary disappears at a
triple point P ¼ 2.5 GPa, quite different from our predic-
tion (11� 2 GPa). The main reason is that our predicted
hcp/bcc transition temperature is lower than Abey’s while
the melting line predicted by Robert et al. is higher than
Abey’s. (iii) Our prediction for the bcc stability field does
not look like a pocket, as recently suggested, but it does
overlap with the PT range of that pocket [24] (see Fig. 4).
In summary, using the concept of the phonon quasipar-

ticle, we have investigated the hcp → bcc phase boundary
of Be. We find that bcc Be is stabilized at low pressures and
high temperatures by anharmonic effects. For hcp Be,
anharmonic effects on phonon properties are also signifi-
cant. Using anharmonic phonon dispersions, we evaluated
the free energies of both phases and showed that the bcc
phase emerges as a premelting phenomenon at relatively
low pressures. Our results for the hcp → bcc phase
boundary are consistent with most experimental observa-
tions [12,14–18,20,21] in all important aspects.
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