
Evidence for Anomalous Dynamic Heterogeneities in Isostatic Supercooled Liquids

M. Micoulaut1 and M Bauchy2
1Laboratoire de Physique Théorique de la Matière Condensée, Paris Sorbonne Universités—UPMC,

4 Place Jussieu, F-75252 Paris Cedex 05, France
2Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095-1593, USA

(Received 25 April 2016; revised manuscript received 23 January 2017; published 5 April 2017)

Upon cooling, the dynamics of supercooled liquids exhibits a growing transient spatial distribution
of relaxation times that is known as dynamic heterogeneities. The relationship between this now well-
established crucial feature of the glass transition and some underlying liquid properties remains challenging
and elusive in many respects. Here we report on computer simulations of liquids with a changing network
structure (densified silicates), and show that there is a deep and important link between the mechanical
nature characterized by topological constraints and the spatial extent of such fluctuations. This is not only
revealed by a maximum in the dynamic correlation length ξ4 for fluctuations when the liquid becomes
isostatically rigid, but also by a contraction of the volume of relaxing structural correlations upon the onset
of stressed rigidity.
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Once crystallization has been avoided under fast cooling,
the viscosity of many liquids is found to increase dramati-
cally to reach η ¼ 1012 Pa · s at a reference temperature
that is defined as the glass transition temperature Tg. This
empirical definition signals that below Tg a liquid will be
too viscous to flow on a laboratory time scale, and the
resulting material will be identified as a glass, i.e., a
material that displays all the salient microscopic features
of a liquid but has the macroscopic characteristics of
a solid.
Both recent experiments [1,2] and computer simulations

[3–5] indicate that nontrivial spatiotemporal fluctuations
emerge during the course of this slowing down of these so-
called dynamic heterogeneities, and these features are not
restricted to supercooled liquids satisfying T > Tg because
they can be observed in jammed systems [1], colloids [2],
or polymers [6] as well, underscoring the general character
of the physical behavior [7]. Such investigations have
detected that a small part of the liquid evolves more
rapidly, but have also verified that “rapid” regions have
a collective behavior that strongly controls the dynamics.
For the particular case of supercooled liquids, it has been
furthermore established that such dynamic fluctuations
become stronger as the liquid gets closer to Tg, and these
can be characterized [8] by a growing dynamic correlation
length ξ4 that seems to diverge in a fashion similar to
typical length scales close to a critical point in ordinary
phase transitions [9]. Another important feature signaling
an increased complexity of the fluid dynamics in the
vicinity of the glass transition is the detection of a dramatic
change in the connection between translational and rota-
tional diffusivity and viscosity that is valid in equilibrated
liquids, and quantified by the Stokes-Einstein (SE) relation:
η ∝ T=D. Once T is sufficiently low, this relation breaks

down [10], and the diffusivity becomes much higher than
its value expected from the viscosity using the SE relation.
The reasons for this breakdown remain an unanswered
question, although connections with dynamic hetero-
geneities have been stressed [11].
We adopt in the present Letter a slightly different

approach, albeit in line with previous simulation work
on, e.g., soft sphere liquids [12] or silica [13] regarding
dynamic heterogeneities. Network glass-forming liquids
[14,15] under different thermodynamic conditions afford,
indeed, a unique venue for exploring the dynamics and
understanding ultimately the origin of the nontrivial relax-
ation events linked to dynamic heterogeneity. Such systems
are dominated by important structural features given the
ionocovalent nature of bonds and short range order motifs,
e.g., tetrahedra such as in silica. Secondly, one can tune the
thermodynamic conditions (composition, pressure) in a
continuous fashion, and compositional trends in physical
properties can be compared, leading to the establishment of
new correlations. This choice may be particularly interest-
ing since another key quantity of the glass transition,
fragility, is known to change nonmonotically in such
network-forming liquids with a fragile-strong-fragile evo-
lution upon, e.g., appropriate alloying [16].
Here, we show that these features encoded in various

quantities emphasizing the onset of a heterogenous dynam-
ics are dominated by the elastic nature of the supercooled
liquid structure. This picture can be cast in a rather simple
form by using topological constraints [17], which derive
from rigidity theory, while also revealing that particular
liquids display an enhanced ease to collective dynamics. It
is found, indeed, that isostatic liquids fulfilling the Maxwell
stability criterion display a certain number of anomalous
behaviors that highlight their critical nature and the one of
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corresponding glasses. The number of topological con-
straints nc is evaluated from the relevant bond-stretching
and bond-bending interactions and compared to available
degrees of freedom per atom [18]. Results indicate that
when the supercooled liquid is optimally constrained
(nc ≃ 3), the dynamic correlation length for fluctuations
is maximum, whereas the volume on which structural
relaxation is correlated contracts as the liquid becomes
stressed rigid (nc > 3). Secondly, the obtained trends with
pressure or constraints also permit us to investigate in detail
the validity of the SE relation in connection with the rigid
nature of the network structure. The target system is a
prototypal network-forming liquid, 2SiO2-Na2O (NS2),
which is known to undergo a rigid to flexible transition
induced by pressure, and the focus is on two temperatures
at 2000 and 1500 K in order to eventually separate effects
due to the viscous slowing down from rigidity. For details
regarding the simulation procedure [19], successful com-
parison with experimental data [19,20], and the estimate
of topological constraints [15], we refer the reader to the
relevant articles.
To establish our conclusions, we have first built on the

framework for characterizing dynamic heterogeneity intro-
duced by Lačević et al. [21]. The spatially heterogeneous
dynamics for the densified liquids under consideration can
be easily decoded from accumulated atomic scale snap-
shots by comparing two structures at two different times via
the measure of an overlap function that is defined by

QðtÞ ¼
XN

i¼1

XN

j¼1

δ(rið0Þ − rjðtÞ); ð1Þ

out of which a fluctuation χ4ðtÞ¼βV½hQ2ðtÞi−hQðtÞi2�=N2

can be determined that represents the volume on which
structural relaxation processes are correlated, χ4 being also
expressed in terms of a “coarse-grained” four-point time
dependent density correlation functions g4ðr; tÞ measuring
correlations of motions between time t ¼ 0 and t arising at
two points r and 0 [21].
Using the simulated trajectories, we first represent in

Fig. 1 the behavior of the overlap function QðtÞ that
exhibits the usual complex decay, also found in the
intermediate scattering function Fsðk; tÞ. The trend with
pressure is, in fact, rather close to the one obtained at the
same pressures for Fsðk; tÞ [15]; i.e., hQðtÞi decays at long
times but for some intermediate pressures (6 GPa) a typical
relaxing time is found to be substantially reduced. By
choosing a fixed value [i.e., hQðtÞi ¼ 1=e], at 2000 K we
find, indeed, a typical time τQ ¼ 35, 11, and 45 ps for 0, 6,
and 22 GPa, respectively. These values are close to those
found from Fsðk; tÞ. As the temperature decreases to
1500 K, the relaxation time increases substantially as
expected (see below). The fluctuation of QðtÞ [i.e.,
χ4ðtÞ, inset] not only indicates that correlated motions
are time dependent and χ4ðtÞ is zero at short times but

also displays a maximum at t ¼ tmax
4 that is also pressure

dependent.
Next, we determine the link with structural correlations.

From the calculated function g4ðr; tÞ, by Fourier transform
one can obtain the four-point structure factor S4ðk; tÞ,
which is represented in Fig. 2 for the time t ¼ tmax

4 , and
which increases at small k for all pressures. The low wave
vector part of S4ðk; tÞ usually permits us to extract a
correlation length ξ4 that describes, e.g., density fluctua-
tions near a liquid-gas transition in the Ornstein-Zernike
theory [9]:

Sol4 ðk; tÞ ¼
Sol4 ð0Þ

1þ k2ξ4ðtÞ2
: ð2Þ

From Eq. (2) and the different trajectories, the correlation
length ξ ¼ ξ4ðtmax

4 Þ can be represented as a function of
pressure (inset of Fig. 2). Interestingly, ξ4 goes through a
broad maximum found at ≃4.8 Å for both 2000 and
1500 K. This maximum is approximatively defined
between 2 and 12 GPa, signaling that in this pressure
range, the supercooled liquids display a rather different
dynamics as compared to low or high pressure, with
enhanced correlated motions of atoms, and an obvious
anomaly. Similarly, we find (not shown but see below) an
anomalous behavior for both tmax

4 and ξ4ðtmax
4 Þ, which

display a minimum and a maximum in the same pressure
interval, respectively.
What is the origin of these nonmonotonic trends?

Our key result is the identification that these nonobvious
features in dynamic heterogeneities are driven by aspects of
rigidity.
To support this claim, we evaluate for all obtained

trajectories at given P and T the density nc of rigid
topological constraints from calculating the radial and
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FIG. 1. Behavior of the overlap order parameter QðtÞ for three
selected pressures in densified liquid NS2 for T ¼ 2000 K. The
inset shows the corresponding fluctuations of QðtÞ embedded in
the time-dependent order parameter χ4ðtÞ.
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angular excursions between pairs or triplet of atoms
[14,15]. This enumeration is directly inspired by the
classical mechanics view of topological constraints asso-
ciating large or small radial or angular motion with the
absence or presence of corresponding bond-stretching and
bond-bending restoring forces. In the literature, such an
analysis for amorphous networks and glasses has led to the
recognition that the Maxwell stability criterion for iso-
staticity fulfilled when nc ¼ 3 in 3D is associated with an
elastic phase transition [18], the locus of the transition
being determined by the presence of structures that are
optimally constrained. At low (zero) temperature, this
transition separates a flexible phase having low energy
deformation modes [23] from a stressed rigid phase with a
large bond or interaction density, these salient features
being now also observed in jammed solids [24,25] and
biological networks [26]. The extension to liquids from
phenomenological models [17,27] or MD simulations [14]
permits us to study the effect of such rigidity transitions
also in the liquid phase, and we build on these below.
Figure 3(a) (inset) shows the behavior of ξ4, now

represented as a function of the constraint density nc.
The location of the maximum noticed previously (Fig. 2,
inset) is found to coincide with the criterion nc ¼ 3 typical
of isostatic liquids. Remarkably, the behavior of ξ4 with
temperature also highlights the fact that the dynamical
correlation length displays only a limited variation for
nc ¼ 3, whereas ξ4 increases substantially when nc ≠ 3 as
also observed in some other glass-forming liquids [7].
Mousseau and co-workers [28] have suggested that the
addition or destruction of single bonds close to the isostatic
condition induces important variations in the size of
macroscopic regions of the network, suggesting that the

system is maintained in a critical state as nc ≃ 3. As a
result, the volume over which structural correlations
emerge is found to also display an anomalous behavior
that is revealed by a dramatic decrease of χ4 [Fig. 3(a)].
This quantity reduces, indeed, by more than a factor 2, and
underscores the presence of a percolative phase transition,
as also observed at low temperature [18,24]. It involves a
rapid decrease of local structural ordering as reflected by
the similar evolution of the calculated pair correlation
entropy s2 [20,29]. In flexible networks, the absence of
rigid structures and the possibility of low energy deforma-
tion modes permit us to avoid the emergence of large
scale correlations, whereas in stressed rigid liquids, both
internal eigenstress and a large bond density prevent a
dynamic evolution of the structural correlations.
Furthermore, it is also recognized that the dynamic corre-
lation length ξ4 is of the same order as the one related to the
first sharp diffraction peak (FSDP) (red curve, inset of
Fig. 2) [22,30] found at low temperature (300 K) in static
correlations of network-forming species (Si–O). The width
of this peak leads to a coherence length for ordering
7.7=ΔkFSDP [31] that is indicative of an average cluster
size, following the Scherrer equation for microcrystals.
Importantly, given the same trend and the same order of
distances, one is led to believe that the dynamic correlation
length ξ4 is associated with this repetitive characteristic
distance between (Si,O) atoms. It builds up in isostatic
systems and give rise to the first sharp diffraction peak in
the static structure factor SðkÞ of corresponding glasses.
In addition, the typical time for maximal correlated

motions (i.e., tmax
4 ) is seen to be minimal when the liquid

is isostatic, and for 2000 K the trend with nc is found to
nearly parallel the one obtained [15] from a separate
computation of the viscosity η and G∞ from the shear
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strain or shear stress response using τα ¼ η=G∞, whereG∞
is a plateau shear modulus, once the intermediate time (β
relaxation) processes have been relaxed [15,32]. The
maximum value for ξ4 that results from clusters with an
enhanced cooperative motion turns out to induce a facili-
tation for a local structural relaxation as revealed by the
minimum of tmax for the isostatic liquids.
The present results have a certain number of conse-

quences regarding aspects driving the glass transition, and
its connection with the rigidity of the underlying liquid,
while also indicating features of criticality in the high
temperature liquid as revealed by the cusplike behavior of
ξ4 close to nc ≃ 3. It is usually believed that rigidity
controls the fragility of network-forming melts, and iso-
static systems lead to a strong (Arrhenius) behavior for the
viscosity dependence [16], and involve a homogeneous
spatial distribution of constraints. This, furthermore, leads
to thermally reversing windows (Boolchand phases) with a
minimal change in enthalpy across the glass transition [33]
when nc ≃ 3 [15]. Such reversible liquids usually display a
strong character with minimum values for the fragility [16].
The correlations are only partially met in the present NS2
liquid because the evolution of the fragility [34] cannot be
easily linked with the variation of ξ4. In fact, NS2 glasses
having reversible character [15] are also those that exhibit a
maximal correlation length scale ξ4 for dynamic hetero-
geneity and a critical nature in model networks [28],
although the fragility does not show any anomaly [34].
One, thus, arrives at the conclusion that such isostatic
liquids located at the flexible-to-stressed rigid elastic phase
transitions lead to a rapid variation of dynamic hetero-
geneities that impacts the transport and relaxation proper-
ties: relaxation time, viscosity, diffusivity, and, ultimately
the enthalpic relaxation at the glass transition. The gener-
alized susceptibility χ4 being related to the fluctuations in
the number QðtÞ of the overlapping particles, one, finally,
acknowledges that the onset of a stressed rigid liquid will
induce a strong reduction of the volume of correlated
motions. In parallel, the maximum of the correlation length
ξ4 associated with the overlapping particles indicates that
isostatic liquids display a tendency to an onset of caging
given that flexible regions are now significantly reduced
and surrounded by an overconstrained network structure.
This is usually also detected when ξ4 increases on densi-
fication [4,8].
Although there are some conflicting conclusions on this

issue [10,11,35,36], we finally discuss the connection of
the dynamic heterogeneities with the breakdown of the SE
relationship. A popular means to detect this breakdown is
to represent calculated diffusivities as a function of η=T
(Fig. 4). At low temperature, the representation deviates
from the high temperature behavior D ∝ η=T, and instead
one usually uses a fractional SE exponent ζ such as
D ∝ ðη=TÞζ with ζ ≃ 0.6–0.9 in many supercooled liquids
[10,35,36]. Our results [20] indicate that the silicon

diffusivity DSi verifies, in fact, D ∝ η=T, this observation
being valid for all investigated temperatures or pressures
[Fig. 4(a)], including the lowest one at 1500 K, and
consistent with a compilation of data on silica [37].
However, the behavior of diffusivities DNa of the more
mobile Na atoms differs markedly from DSi because a
breakdown of the SE relationship can be detected at low
temperatures. In addition, for a fixed temperature and when
the rigidity nature of the liquid is tuned by pressure, even
the fractional SE relationship is found to be partially valid
only. As the rigidity analysis is performed (gray zone), it is
found, indeed, that typical fractional SE exponents encoun-
tered in supercooled liquids can only fit the stressed
rigid liquids having nc > 3 [ζ ≃ 0.65ð9Þ, broken line in
Fig. 4(b)], whereas flexible liquids involve fractional
exponents of the order of ζ ≃ 0.2, and the isostatic liquids
an important variation of ζ with nc. In addition, one now
detects that for a fixed temperature flexible and isostatic
liquids with changing pressure exhibit an increase of DNa
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with increasing viscosity, and given the fragile or strong
nature of such liquids [16], a proposed correlation [38]
between SE deviation and fragility does not hold in the
present case.
In conclusion, we have shown that the heterogeneous

dynamics associated with the glass transition is linked with
aspects of rigidity, and isostatic liquids are found to be at
the critical edge of very different behaviors. While flexible
(low-connected) and stressed rigid (highly connected)
liquids exhibit larger relaxation times towards equilibrium,
and a reduced dynamic correlation length, isostatic liquids
fulfilling nc ≃ 3 not only lead to an enhanced dynamic
correlation that manifests by a maximum of ξ4 but also
display a dramatic variation in the volume of correlated
motions. Given the reported connections between isostatic
character and reversibility windows at Tg, the present
anomalous features on dynamic heterogeneities in the
liquid state are believed to drive well-known anomalies
at the glass transition and in the glassy state occurring at the
rigidity transition. It would be interesting to check the
general character of these findings by focusing on other
typical glass-forming systems known to undergo a rigidity
transitions, including those (Ge–Se) that display also an
anomaly in the fragility variation. Work in this direction is
in progress.
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