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We report structural transformation of sixfold vortex domains into two-, four-, and eightfold vortices via
a different type of topological defect in hexagonal manganites. Combining high-resolution electron
microscopy and Landau-theory-based numerical simulations, we investigate the remarkable atomic
arrangement and the intertwined relationship between the vortex structures and the topological defects.
The roles of their displacement field, formation temperature, and nucleation sites are revealed. All
conceivable vortices in the system are topologically classified using homotopy group theory, and their
origins are identified.
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Topological structures emerging near spontaneous
symmetry-breaking transitions are ubiquitously observed
in wide branches of science [1–6]. In condensed matter,
topologically protected defects can be promising candidates
for information storage technology. Skyrmions, multiferroic
vortices, domain walls, dislocations, and disclinations are
examples where emergent properties and behaviors have
been reported [7–12]. Investigation of these stable configu-
rations is of great interest due to their fascinating underlying
physics responsible for striking geometric patterns found in
the order-parameter (OP) field [13]. Understanding topo-
logical structures is crucial to the prediction of the behavior
and functionalities emerging from these topological defects
[14,15]. However, to date, the interactions among topologi-
cal defects have rarely been studied, largely due to the
difficulties in experimental observation and validation.
Understanding the interactions between topological defects
might provide a new route to achieve programmable
manipulation and control to yield emergent functionality.
In multiferroic hexagonal manganites RMnO3 (R ¼

rare earth), the crystal structure adopts centrosymmetric
P63=mmc (D6h) at high temperature. A structural transition
occurs at temperature Ts, which lowers the symmetry to
P63cm (C6v) mainly by the condensation of the K3 phonon
mode. This process leads to the trimerized tilting of MnO5

bipyramids and corrugation of intercalated R layers while
maintaining the sixfold symmetry [Fig. 1(a)]. The conden-
sation yields six possible azimuthal angles (φ) of the
bipyramid tilting at an interval of π=3. Each value of φ is
accompanied by a distinct corrugated configuration in
R layers, in which two-thirds of R atoms shift up along
the c axis and the rest shift down, as summarized in Fig. 1(b)
[16–18]. Previous theoretical work suggests that the con-
tinuous symmetry of OP space at high temperature gives rise

to the formation of vortex cores, while the discrete Z6

symmetry at low temperature leads to the emergence of
six bounded domain walls surrounding each vortex core
[19–22]. With continuous symmetry of the degeneracy OP
space, φ varies continuously around the cores. At low
temperature, φ falls into one of the six preferred values
with equal probability, andZ6 symmetry becomes dominant
in the system [19]. This process results in the emergence of
six crystallographically preferred domains denoted as αþ,
β−, γþ, α−, βþ, γ− or αþ, γ−, βþ, α−, γþ, β− (known as
vortex and antivortex) in sequence around the core [16].

FIG. 1. Nonsixfold vortex domains in hexagonal RMnO3.
(a) Atomic unit cell showing the P63cm symmetry with down-
ward polarization. The yellow and orange spheres represent R
ions at 2a and 4b Wyckoff positions, respectively. (b) Atomic
models for three types of antiphase domains (α, β, γ) and two
types of ferroelectric polarizations (þ, −). (c) Composite of
mesoscale dark-field TEM images with two-, four-, six-, and
eightfold vortices marked by red circles and rectangle in YMnO3.
(d) The corresponding schematic diagram from (c).

PRL 118, 145501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 APRIL 2017

0031-9007=17=118(14)=145501(6) 145501-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.118.145501
http://dx.doi.org/10.1103/PhysRevLett.118.145501
http://dx.doi.org/10.1103/PhysRevLett.118.145501
http://dx.doi.org/10.1103/PhysRevLett.118.145501


These sixfold vortices are topologically protected and
extremely stable under thermal perturbation and external
biasing [22–24]. The distributions and connections of (anti)
vortex cores have been analyzed by graph theory [25,26].
However, with the help of dislocations, the domain sequen-
ces around the vortex cores can be changed. Here, we report
the first experimental observations of nonsixfold vortex
cores in RMnO3 using advanced electron microscopy to
reveal their formation origin at atomic scale. The coupling
mechanisms are studied by numerical simulations based on
Landau theory, and the vortices are topologically classified
via homotopy group theory.
YMnO3 single crystals were grown by the floating zone

method. Electron microscopy work was carried out at
Brookhaven National Lab using the JEOL ARM 200CF
microscope equipped with two aberration correctors
achieving a point resolution of 0.08 nm. For HAADF
(high-angle annular-dark-field) imaging, a convergent

angle of 21.2 mrad and a collection angle of 67–275 mrad
were used. To reduce noise, Wiener filter was used for some
HAADF images.
Figure 1(c) illustrates a mesoscale composite of dark-

field images of hexagonal YMnO3 showing the coexistence
of various two-, four-, six-, and eightfold vortices (marked
by red circles). The first-ever-observed eightfold (anti)
vortex is highlighted with the red rectangle. Figure 1(d)
is the schematic of domain configurations derived from
Fig. 1(c). Careful examination indicates the existence of
partial edge dislocations (PEDs) near the vortex cores. In
the floating zone method, a dramatic change in the sample
temperature during crystal growth might introduce PEDs.
Atomically resolved eightfold and fourfold vortex struc-

tures are shown in Figs. 2(a) and 2(b) [27]. In Fig. 2(a),
domains with the same polarization direction and corruga-
tion state are present in one vortex configuration (two α−,
β−, and γþ domains in this case, energetically unstable in

FIG. 2. Atomic images and schematic diagrams of nonsixfold vortices. (a),(b) High-resolution HAADF STEM images of eightfold
antivortex (a) and fourfold vortex (b) structures viewed along the [100] axis in YMnO3. The bright and less-bright atoms are Y and Mn
ions, respectively. The white horizontal lines with tick marks in (a) and (b) are reference rulers to assist in identifying the translation
relationship across the domain walls (small green and red dashed rectangles represent the unit cell with downward or upward
polarization). Low magnification dark-field images and strain maps, where yellow, red, green, and blue represent the εxx values ofþ8%,
þ4%, −4%, and −8%, respectively, of the core areas are also included. The α, β, and γ are colored in green, red, and blue, respectively.
The red, blue solid squares and yellow dotted rectangle are magnified [27]. (c)–(j) Schematics of eight possible nonsixfold vortices. The
first five (c)–(g) are experimentally observed. AV, antivortex; V, vortex. Vortices shown in (a) and (b) can be topologically classified as
ð−2Þ × ð−2Þ and 0 × ð−2Þ, and (c)–(j) can be classified as ð−1Þ × ð−2Þ, 0 × ð−1Þ, ð−1Þ × ð−1Þ, 0 × ð−2Þ, ð−2Þ × ð−2Þ, ð−1Þ × ð−2Þ,
1 × ð−1Þ, and 1 × ð−2Þ, respectively. The horizontal lines in (a)–(j) are the dividing lines for order parameter θ.
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traditional sixfold vortices) can be stabilized by PEDs.
Similar labeling was applied to other types of nonsixfold
vortices, including the fourfold vortex shown in Fig. 2(b).
More analyses about the configurations of the domain
boundaries are also provided [27]. To map the associated
strain field of the PEDs of the eight- and fourfold vortex
cores,we used geometric phase analyses (GPA) [35], and the
strain field of εxx (the x axis is the [120] direction) around
the PEDs in Figs. 2(a) and 2(b) were constructed from the
atomic images. Clearly, the nonuniform displacement field
near the vortex centers plays a significant role in altering the
corrugated configuration of the vortex structure. The corre-
spondingmesoscale dark-field images that possess dissimilar
contrast for oppositely polarized ferroelectric domains due to
the breaking of Friedel’s law are also included [36]. Careful
atomic image analysis suggests that the PED possesses a
Burgers vector of 1=3 [120]. To avoid the energetically
unfavorable configurations due to the presence of PEDs, the
original sixfold winding sequence α− → βþ → γ− → αþ →
β− → γþ is transformed into a fourfold winding
α− → βþ → γ− → β− → γþ, and a fourfold domain is
formed [Fig. 2(b)]. All our experimentally observed non-
sixfold vortices are summarized in Figs. 2(c)–2(g), along
with other three predicted configurations [Figs. 2(h)–2(j)].
In RMnO3, the formation process of sixfold vortices can

be characterized by the variation of a two-component order-
parameter field: tilting amplitude of MnO5 bipyramids Q
and azimuthal angle φ [19,22,37,38]. The degeneracy OP
space is composed of six distinct points at low temperature
[Fig. 3(a)] and expands to the continuous circle at a
temperature slightly below Ts. The radius of this circle is
proportional to the value of Q, so the circle shrinks into a
single point when T ≥ Ts (Q ¼ 0) [22]. However, because
of the additional structural displacement field induced by
PEDs, these two components are not sufficient for depicting
the domain patterns.We, thus, introduce another scalar order
parameter θ for describing the x component of the displace-
ment field [27]. This parameter reflects the geometric phase
around dislocations and is directly related to the atomic
displacements of R atoms [39–41]. The distribution of θ
around an edge dislocationwith b ¼ 1 and υ ¼ 0.3 is shown
in Fig. 3(b): θ increases continuously from 0 to 2π along any
clockwise circular trajectory whose starting and ending
point are on a dividing line [indicated in Fig. 3(b)], which
is attached to the dislocation core. Considering this dis-
location appears in a monodomain (φ ¼ 0), the “up-down-
down” corrugated configuration above the dividing line
abruptly switches into “down-down-up” below the line. The
mismatch of corrugated configurations across the dividing
line indicates that this line acts like an antiphase domainwall
which is not interlockedwith ferroelectric boundaries. Since
the dislocation is not perfect (for the perfect case, b ¼ 3n; n
is an arbitrary integer), it is always bounded by such a line
[42,43]. Thus, the corrugated configurations can be modu-
lated by θ, and the OP space for RMnO3 in which

dislocations exist can be described by the surface of the
cylinder [Fig. 3(c)]. By topological transformation of this
cylinder, a toruslike OP space V can be obtained [Fig. 3(d)].
Hence, any closed loop in the system characterized by the
(Q, φ, θ) field can be precisely mapped into a continuous
trajectory in V. More atomic models for two-, four-, and
eightfold vortex core arrangements are provided [27]. Both
experimental results and atomic models show that the
corrugated configurations do not change significantly across
dividing lines because the lattice jump induced by the
dislocations is compensated by the changes of the corru-
gated configuration at the domain walls.
According to the homotopy group theory, for such a

toruslike degeneracy space, all vortex configurations shown
in Figs. 2(c)–2(g) can be classified by elements (m, n) of the
fundamental homotopy group π1ðRÞ ¼ Z × Z [4,44,45].
This homotopy group is different from the one presented
inRef. [19],which is due to the expansion ofOP space froma
one-dimensional circle to a torus under the effect of PEDs.
Considering a clockwise loop surrounding the vortex core

(a) (b)

(c) (d)

FIG. 3. (a) The OP space of a dislocation-free system. The six
black points represent six degenerate states with Z6 symmetry at
low temperatures. The corresponding corrugated configurations
of R atoms are also shown. Degeneracy space expands to the
circle with continuous Uð1Þ symmetry as the temperature rises.
The radius of this circle is proportional to Q. (b) A schematic
shows the atomic structure around an edge dislocation with b ¼ 1
in a monodomain. The field of OP θ is represented by the color
legend. The dividing line (doted white line) indicates the position
where θ discontinues. (c) The OP space of the RMnO3 system in
which dislocations (vertical lines) exist. The value of θ varies
from 0 to 2π along the z axis. (d) A toruslike OP space obtained
by transforming the cylinder shown in (c): the two ends of this
cylinder can be equivalent by twisting the cylinder (the αþ point
on the upper end aligns with the lower one along the z axis). With
fixed θ, the variation of φ from 0 to 2π corresponds to a loop
passing once through the smaller hole in the torus (the black
circle). Similarly, as θ varies from 0 to 2π with φ ¼ 0, its
corresponding trajectory is the yellow line on the torus.
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and its image trajectory in theOP space, the absolute value of
integer m or n is the net number of times that the smaller or
larger hole in the torus is circumnavigated by the trajectory,
respectively. The values of m and n are positive when the
circumnavigation directions are along the arrows indicated
in Fig. 3(d) and negativewhen opposite the arrows. Based on
this definition, n equals the Burgers vector b of the
dislocation appearing in the core (for convenience, we treat
the two adjacent PEDs with b ¼ 1 as one PED with b ¼ 2).
All vortex configurations shown in Fig. 2 can be classified
accordingly (see caption of Fig. 2). Generally, defects with
lower winding numbers (i.e., smaller jmj and jnj) are
energetically preferred. It is also interesting to note that
the number of ferroelectric domain walls bounded with a
vortex core equals j6m − 2nj [27]. Thus, a vortex core in our
system should always be surrounded by an even number of
domain walls.
To clarify the vortex-forming mechanism, we use the

Landau phenomenological model for numerical simulations
[27]. The newly defined angle parameter ðφþ θ=3Þ ensures
that the gradient energy density is continuous within
domains, and dramatic variations take place only at ferro-
electric domain walls and vortex cores. Based on this model,
the annealing process can be simulated by the Monte Carlo
method [22]. The vortex configurations of Figs. 2(c)–2(j)
after annealing are shown inFigs. 4(a)–4(h). The temperature
at which dislocations form Td plays an important role in
determining different classes of vortices in these simulations.
When dislocations form above the structural phase

transition point Ts, classes of vortices labeled by 0 ×
ð�1Þ and 0 × ð�2Þ are those most frequently observed
[Figs. 4(a) and 4(e)], and the ð�1Þ × ð�1Þ, ð�1Þ × ð∓ 1Þ,
ð�1Þ × ð�2Þ, and ð�1Þ × ð∓ 2Þ types can be occasionally
observed [Figs. 4(b)–4(d) and 4(g)]. In this case, the initial
distribution of φ is arbitrary and θ is given. As the temper-
ature decreases from above Ts, the field of φ evolves
adequately for lowering the local free energy. Thus, the
vortices with lowest energy can be obtained during this
process. This suggests that the twofold vortex with one
dislocation in the core and fourfold vortex with two dis-
locations in the core are the most energetically preferred. As
discussed in Ref. [22], the formation of sixfold vortex cores
and domainwalls inRMnO3 takes place right at the structural
phase transition temperature. So, it is possible that the
nucleation site of a vortex (i.e., the position around which
φ varies from 0 to 2π continuously) is within or near a
dislocation core region. In such a situation, vortices classified
by ð�1Þ × n can be formed. Because of a higher gradient of
the free energy density induced by a dramatically varying
ðφþ θ=3Þ field in the cores compared with the vortices with
m ¼ 0, the value ofQ decreases noticeably in these regions.
By lowering Td (Td < 2

3
Ts), ½ð�1Þ × n�-type vortices

become common, and the eightfold vortices classified by
ð�2Þ × ð�2Þ can also be formed [Fig. 4(f)]. At T ¼ Td, the
sixfold vortex pattern has already been formed, and the

mobility of the vortex cores and domain walls is much
lower than that at high temperatures. To balance the
increased free energy induced by the displacement field,
only relatively high-energy vortices form because the
temperature is not sufficiently high to overcome the energy
barrier blocking the formation of the ð0 × nÞ-type vortices.
So, when one dislocation with jbj ¼ 2 happens to locate
within a sixfold vortex core at Td, a ½ð�2Þ × ð�2Þ�-type
vortex forms. In addition, a new type of fourfold vortex
classified by ð�1Þ × ð�2Þ is also frequently observed when
Td <

2
3
Ts. Though it belongs to the same class as the

twofold vortex shown in Fig. 4(d), the number of domain
walls attached to the vortex core does not equal j6m − 2nj.
This is because φ does not vary monotonically around the
vortex core, and two separated areas have the same value of
φ. However, these two areas can coalesce if they are near
each other, and only two domain walls are left after the
merge. Thus, these two kinds of ð�1Þ × ð�2Þ vortices are
topologically identical.
It is noteworthy that the core of the ½ð�2Þ × ð�2Þ�-type

vortex is not stable and tends to split into two adjacent
vortices. For example, a ð2 × 2Þ-type vortex core can split
into a 1 × 2 (both fourfold and twofold vortices are

(a) (b) (c) (d) (i)

(e) (f) (g) (h) (j)

FIG. 4. Numerical simulations based on the Landau free energy
model. (a)–(h) Coexistence of sixfold vortices and eight other
types of dislocation-induced vortices showing the tilting ampli-
tudeQ of the OP field around the vortex cores. The yellow arrows
indicate the position of the dislocations. Corresponding Burgers
vectors b and fundamental homotopy group elements [m × n] are
given at the bottom of each figure. Since the value ofQ is slightly
smaller at the domain walls than within the domains, the bright
red lines indicate the position of the domain walls. Because of the
high gradient free energy density in some types of vortex cores
[(b)–(d) and (f)–(h)],Q decreases dramatically within these cores,
which appear as yellow or green spots in these figures. By
contrast, Q does not obviously decrease within the vortex cores
where the density is relative low [(a),(e)]. Two spots are observed
in (f) because the core is not stable and tends to split into two
subcores. The color legend of Q is shown on the right with units
of Å. (i) and (j) show the free-energy-density distributions around
two ð2 × 2Þ-type eightfold vortex cores obtained at two different
dislocation formation temperatures Td. The fission of the vortex
core contributes to a reduction of the local free energy. Corre-
sponding distributions of Q are given at the top right. The color
legend of the free energy density is shown on the right with units
of eV.
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possible) vortex core and a 1 × 0 (sixfold) vortex core.
Increased Td usually leads to greater distance between
these cores. By comparing Figs. 4(i) and 4(j), it is obvious
that the free energy density of the unsplit eightfold vortex
core obtained at Td ¼ 1

6
Ts is higher than the energies of

those two split cores obtained at Td ¼ 1
2
Ts. This result

explains why the ½ð�2Þ × ð�2Þ�-type eightfold vortex is
rarely seen in experiments.
In conclusion, using aberration-corrected electron

microscopy, we revealed startling detailed atomic configu-
rations of crystallographically forbidden nonsixfold ferro-
electric domains surrounding the vortex cores in hexagonal
YMnO3. The unanticipated symmetry breaking was found
at both mesoscale (domains) and atomic scale (vortex
cores) due to the intertwining of two types of topological
defects, i.e., (anti)vortex cores and PEDs. We showed that
due to the interaction of PEDs with the surrounding lattice,
the initially topologically protected sixfold (anti)vortex
core structures can be transformed into other configura-
tions. Thus, the PED, depending on its characteristics,
including the Burgers vector, formation temperature, and
nucleation sites, can behave as a control knob for regulating
vortex domain symmetry. The ability to manipulate and
control the ferroic orders in RMnO3 in correlation with
spontaneous magnetization, electric polarization, and
spontaneous strain may provide a platform for exploring
emerging physical phenomena with novel applications via
topological defects.
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