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We have formulated the scattering theory onMajorana fermions emerging in the surface bound state of the
superfluid 3He B phase (3He-B) by an impurity. By applying the theory to the electron bubble, which is
regarded as the impurity, trapped below a free surface of 3He-B, the observed mobility of the electron bubble
[J. Phys. Soc. Jpn. 82, 124607 (2013)] is quantitatively reproduced. The mobility is suppressed in low
temperatures from the expected value in the bulk 3He-B by the contribution from the surface Majorana
fermions. By contrast, the mobility does not depend on the trapped depth of the electron bubble in spite of the
spatial variation of the wave function of the surface Majorana fermions. Our formulated theory demonstrates
the depth-independent mobility by considering intermediate states in the scattering process. Therefore, we
conclude that the experiment has succeeded in observing Majorana fermions in the surface bound state.
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The detection of Majorana fermions in topological super-
fluids or superconductors [1–4] is a modern objective in
condensed matter physics. Among several systems hosting
Majorana fermions [5–13], the superfluid 3He B phase
(3He-B) is an ideal one, because the bulk properties have
been well established [14,15]. The established theory allows
us quantitative comparison with experimental results. In
3He-B,Majorana fermions emerge in the surface bound state
with linear dispersion below the superfluid gap [16–20].
There have been a few reports on the successful detection

of theMajorana fermions in 3He-B [21,22]. In an experiment,
the impedance by the surface acoustic wave of 3He-B was
measured in a sample cell [21]. The observed impedance
qualitatively corresponds with the theoretically evaluated
impedance by considering the surface bound state. Another
experiment demonstrates the enhancement of heat capacity
of 3He-B in low temperatures [22]. This enhancement is
interpreted as caused by the contribution from the Majorana
fermions in the surface bound state; however, the heat
capacity is larger than an estimated value from the geomet-
rical surface area of the sample owing to the surface rough-
ness. Thus, it is hard to quantitatively compare theoretical
predictions and experimental results for 3He-B in a vessel
owing to the surface roughness with the atomic scale. At the
rough surface, theMajorana fermions have a broad spectrum
deviated from linear dispersion [23].
The specular reflection of 3He quasiparticles (QPs) is

realized on a free surface. The experiment to observe the
Majorana fermions in the surface bound state at the free
surface of 3He-B was performed by Ikegami, Chung, and
Kono [24]. In the experiment, the mobility of electron
bubbles trapped below the free surface is measured. Note
that the electron bubble is a self-trapped electron by the
Pauli exclusion with electrons surrounding 3He atoms [25].
Since the drag force on the slowly moving electron bubbles
is caused by a momentum transfer from the 3He QPs, the

Majorana fermions in the surface bound state are expected
to be observed via the mobility. The formulation on the
mobility of the electron bubbles in the bulk 3He is well
established [26–28], which reproduces the experimental
results [25,29,30]. Furthermore, the transverse force on the
moving electron bubbles in the superfluid 3He A phase,
which is the direct evidence of chiral symmetry breaking
[31,32], is quantitatively demonstrated by considering a
momentum transfer from Weyl fermions in the bound state
around the electron bubble [33].
In the experiment by Ikegami, Chung, and Kono [24],

the observed mobility is suppressed in low temperatures
from the theoretically evaluated value for 3He-B in the
bulk [26,27]. The suppression of the mobility can be
interpreted as caused by the scattering with low-energy
Majorana fermions. However, the observed mobility is
independent of the trapped depth of the electron bubbles
in the whole measuring range 21 nm ≤ z ≤ 58 nm in spite
of the fact that local density of states (DOS) of theMajorana
fermions is modulated with the scale of the coherence
length, ξ ∼ 100 nm. Thus, it has been unclear on the origin
of the suppressed mobility and whether the experiment
succeeded in observing the Majorana fermions in the
surface bound state.
In this Letter, we formulate the scattering between an

impurity and the Majorana fermion in the surface bound
state so as to understand the mobility observed by the above
experiment [24]. The mobility obtained by our formulation
quantitatively reproduces the observed depth-independent
mobility as a result of the fact that the depth dependence of
the scattering cross section and the local DOS of the surface
bound state cancel out.
Formulation.—The mobility of impurities, such as the

electron bubbles, is determined by the momentum transfer
from the 3He QPs to the impurity. The equation of motion
for the momentum of the impurity is given by [33,34]
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dP
dt

¼ −
X

k;k0;σ;σ0
ℏðk0 − kÞð1 − fk0 ÞfkΓvðk; σ → k0; σ0Þ; ð1Þ

where fk ¼ ½1þ expðEk=kBTÞ�−1 is the Fermi distribution
at temperature T for the QP with excitation energy Ek and
Γvðk; σ → k0; σ0Þ is the transition rate for the QPs from
wave number k and spin σ to k0 and σ0 by the scattering on
the moving impurity with velocity v. By the time-reversal
symmetry in 3He-B, the equation of motion becomes, up to
the first order of v [33,34],

dP
dt

¼ −
ℏ2

2kBT

X

k;k0;σ;σ0
½v · ðk0 − kÞ�ðk0 − kÞð1 − fkÞfk

× Γðk; σ → k0; σ0Þ; ð2Þ

where Γ is the transition rate for the QPs by the scattering
on the static impurity:

Γðk; σ → k0; σ0Þ ¼ 2π

ℏ
δðEk0 − EkÞjtðk; σ → k0; σ0Þj2: ð3Þ

Here, we consider only the elastic scattering, because the
recoil energy of the impurity is sufficiently low according to
the experiments [25,29,30]. Since the drag force on the
moving impurity with v∥ parallel to the free surface is given
bydP=dt ¼ −η∥v∥, the Stokes drag coefficient is obtained by

η∥ ¼
πℏ
2

X

k;k0
ðk∥0 − k∥Þ2

�
−
∂fk
∂Ek

�
δðEk0 − EkÞ

×
X

σ;σ0
jtðk; σ → k0; σ0Þj2: ð4Þ

The squared T-matrix element is given by

X

σ;σ0
jtðk; σ → k0; σ0Þj2 ¼

X

σ;σ0¼↑;↓

jhΨk0;σ0 jTSjΨk;σij2: ð5Þ

For the surface bound state in 3He-B, the spinors for
the Majorana fermions are described by jΨ�

k;↑i¼
ð1= ffiffiffi

2
p Þe−iϕ=2ð1;0;0;iÞT jki and jΨ�

k;↓i¼∓ð1= ffiffiffi
2

p Þeiϕ=2ð0;i;
−1;0ÞT jki for the QP energy Ek ¼ �Δ sin θ [16,17,35],
whereΔ is the bulk gap and ϕ and θ are the azimuthal angle
and the polar angle from the normal axis to the free surface,
respectively. The wave number of the Majorana fermions is
fixed on the Fermi wave number, k ¼ kFk̂. The T-matrix
element hk0jTSjki≡ TSðk̂0; k̂; E; zÞ is given by the following
equation based on theLippman-Schwinger equation [28,33]:

TSðk̂0; k̂; E; zÞ ¼ TNðk̂0; k̂Þ þ NF

Z
dΩk00

4π
TNðk̂0; k̂00Þ

× ½gSðk̂00; E; zÞ − gN �TSðk̂00; k̂; E; zÞ; ð6Þ

where NF is the DOS in the normal state per spin. Since the
size of the impurity is much less than the coherence length,
the T matrix depends on the quasiclassical Green’s function
gSðk̂; E; zÞ for the surface bound state only at the impurity
position z [38]. The quasiclassical Green’s function in the
normal state is given by gN ¼ −iπτ0, and the expression of gS
is obtained by Ref. [19] (see also Supplemental Material
[39]). The T matrix in the normal state is given by
TNðk̂0; k̂Þ ¼ diag½tNðk̂0; k̂Þσ0;−tNð−k̂0;−k̂Þ�σ0� with

tNðk̂0; k̂Þ ¼ −
1

πNF

X∞

l¼0

ð2lþ 1Þeiδl sin δlPlðk̂ · k̂0Þ; ð7Þ

wherePl is the Legendre polynomial and δl is the phase shift
depending on the potential of the impurity.Here, τ0 (σ0) is the
unitmatrix in theNambu (spin) space. By solving Eq. (6), we
derive the squared T-matrix element in Eq. (4).
The summation of the wave number for initial and final

states in Eq. (4) can be replaced by the integral:

X

k

→
Z

Δ

−Δ
dEk

Z
dΩk

4π
Nðk̂; Ek; zÞ; ð8Þ

where the angle-resolved local DOS of the surface bound
state is given by [19]

Nðk̂; Ek; zÞ ¼ NF
πΔj cos θj

4
sech2

�
z
2ξ

�

× ½δðEk − Δ sin θÞ þ δðEk þ Δ sin θÞ�; ð9Þ

where ξ≡ ℏvF=2Δ with the Fermi velocity vF. Thus, the
depth dependence of the impurity mobility originates from
the DOS of the surface bound state and the T-matrix
element through the quasiclassical Green’s function. By the
replacement of the summation by the integral, the drag
coefficient in Eq. (4) is reduced to

η∥ ¼
π2

16
sech4

�
z
2ξ

�
n3pF

Z
Δ

−Δ
dE

�
−
∂f
∂E

�

×
3

2

Z
2π

0

dφð1 − cosφÞ d̄σ
dΩ

ðφ; E; zÞ; ð10Þ

where n3 ¼ k3F=3π
2 is the 3He density, pF is the Fermi

momentum, and φ≡ ϕ0 − ϕ. The polar angle averaged
differential cross section dσ=dΩ is given by

dσ
dΩ

ðφ; E; zÞ ¼
�
πNF

kF

�
2
�
E
Δ

�
4 1

4

X

s;s0¼�1

×
X

σ;σ0
jtðk∥; sk⊥; σ → k0∥; s

0k⊥; σ0Þj2; ð11Þ

where the amplitude of the perpendicular wave number

k⊥ ≡ kFj cos θj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F − k2∥

q
is fixed by setting the QP
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energy and the sign of that remains only as a degree of
freedom in the T-matrix element. The fourth power of the
QP energy, ðE=ΔÞ4, originates from the linear dispersion of
the surface bound state, ðk∥=kFÞ2 ¼ ðE=ΔÞ2, and the
Jacobian sin θ sin θ0 being replaced by ðE=ΔÞ2 owing to
the delta function in the DOS of the surface bound state in
Eq. (9). Here, we define the total cross section and transport
cross section as

σtotðE; zÞ≡ 3

2

Z
2π

0

dφ
dσ
dΩ

ðφ; E; zÞ; ð12Þ

σtrðE; zÞ≡ 3

2

Z
2π

0

dφð1 − cosφÞdσ
dΩ

ðφ; E; zÞ; ð13Þ

respectively. Then, the drag force on the impurity moving
parallel to the free surface from the surface Majorana
fermions is obtained by the energy integral of the transport
cross section.
So far, we generally formulate the scattering theory on

the Majorana fermions in the surface bound state by an
impurity with the following assumptions. (i) The velocity
of the moving impurity is sufficiently low; i.e., the drag
force is independent of the impurity velocity. (ii) The recoil
energy of the impurity is sufficiently low; i.e., the collision
process is the elastic scattering. (iii) The size of the
impurity is much less than the coherence length; i.e., the
T matrix depends on the quasiclassical Green’s function
only at the impurity position. From now on, we consider the
electron bubble as the impurity whose potential is well
modeled by the hard sphere potential. This model potential
quantitatively reproduces not only the observed mobility in
the A and B phases [26–28] but also the transverse force on
the electron bubble in theA phase caused by chiral symmetry
breaking [33,40]. For the hard sphere potential with radius
R, the phase shift δl is given by tan δl ¼ jlðkFRÞ=nlðkFRÞ,
where jl and nl are the spherical Bessel and Neumann
functions, respectively. The only parameter, the radius R of
the hard sphere potential, is fixed by the observedmobility in
the normal state μN ¼ 1.8 × 10−6 m2 V−1 s−1 [24] at R ¼
11.17k−1F [33,40].
Scattering cross section.—First, we discuss the scatter-

ing cross section between the electron bubble and the
Majorana fermion in the surface bound state. In Fig. 1(a),
we show the total cross section σtotðE; zÞ and the transport
cross section σtrðE; zÞ at z ¼ ξ. Here, the scattering cross
sections have the relation σð−EÞ ¼ σðEÞ by the symmetry
of the Majorana fermions. The cross sections have the peak
structures on account of the quasibound state around the
electron bubble which decays to the surface Majorana
fermion with a finite lifetime. The peak structures are
clearly seen in the total cross section at z ¼ 10ξ [Fig. 1(b)],
because the quasibound state has a long lifetime deep in
3He-B from the free surface. Each peak is derived from
each partial wave l≲ kFR. When the electron bubble

approaches to the surface, the peaks broaden out and the
partial waves interfere with each other. Note that the bound
state around the electron bubble is never detected in the
bulk, because low-energy QPs below the superfluid gap are
absent. The influence of the quasibound state emerges only
after the presence of the low-energy Majorana fermions in
the surface bound state.
The transport cross section is strongly suppressed from

the total cross section. In order to clarify the reason for the
suppression, the polar angle averaged differential cross
section scaled by πR2 at z ¼ ξ for E ¼ 0.9Δ is depicted in
Fig. 1(d) by a solid line. The polar angle averaged differ-
ential cross section should be compared with that in the
normal state depicted by a dashed line with the scale
10πR2, where the total cross section and transport cross
section in the normal state are σNtot ≈ 2πR2 and σNtr ≈ πR2,
respectively. By the comparison between them, it is clear
that the strong suppression of the transport cross section is
due to the reduction of the backscattering. The reduction of
the backscattering with an oscillation of the differential
cross section results from the constructive interference of
the partial waves with l≲ kFR in the forward direction
and the destructive interference of them at other angles as
well as the bulk B phase [27]. In particular, the perfect
backscattering of the Majorana fermion from momentum
k∥ to −k∥ is forbidden. It is similar to the edge state in
topological insulators which is not scattered to backward
by nonmagnetic impurities owing to the time-reversal
symmetry [2]. Note that the electron bubble is regarded
as a nonmagnetic impurity for the 3He QPs with a small
nuclear magnetic moment.
The depth dependence of the transport cross section is

shown in Fig. 1(c). As the electron bubble approaches to
the free surface, the transport cross section becomes
smaller. This depth dependence is due to the lifetime of
the quasibound state around the electron bubble, which is
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FIG. 1. (a) Total cross section and transport cross section at
z ¼ ξ. (b) Total cross section at z ¼ 10ξ. (c) Transport cross
sections at z ¼ 0.5ξ, ξ, and 1.5ξ. (d) Polar angle averaged differ-
ential cross section scaled by πR2 at z ¼ ξ forE ¼ 0.9Δ (solid line)
and that in the normal state scaled by 10πR2 (dashed line).
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short near the free surface. The lifetime is embedded in the
quasiclassical Green’s function gSðk̂; E; zÞ [19,39] describ-
ing the intermediate states in the scattering process.
Mobility.—The QP energy integral of the transport cross

section in Eq. (10) provides the drag coefficient η∥ on the
electron bubble by the Majorana fermions in the surface
bound state. On mobility, however, the drag force also acts
on the electron bubble by the QPs in the continuum state
with the energy above the superfluid gap. When we assume
that the transport cross section for the QPs in the continuum
state corresponds to that in the bulk 3He-B, σBtrðEÞ, the drag
coefficient is given by [26,27]

ηB ¼ 2n3pF

Z
∞

Δ
dE

�
−
∂f
∂E

�
σBtrðEÞ: ð14Þ

From the drag coefficients, we can obtain the mobility as
μ ¼ e=ðη∥ þ ηBÞ, where e is the electron charge. The
temperature dependence of the mobility comes from the
amplitude of the gap ΔðTÞ and the derivative of the Fermi
distribution −∂f=∂E ∝ sech2ðE=2kBTÞ. In low temper-
atures, therefore, the mobility is dominated by the
Majorana fermions in the surface bound state, because
the low-energy QPs have a major contribution to the drag
force. Then, the assumption that the transport cross section
in the continuum state is replaced by that in the bulk is
relevant in low temperatures.
In Fig. 2, we compare the temperature dependence of the

calculated mobility (solid lines) and the experimental result
(circles) in Ref. [24]. The experimental data have error bars
about �2% of μ=μN which are smaller than the size of the
data symbol. The systematic error in temperature due to the

calibration is less than 3% [41]. The calculated mobility is
shown for positions of the electron bubble at z ¼ 21, 40,
58, and 400 nm. The obtained mobility is strongly sup-
pressed in low temperatures from the bulk value of the
mobility (dashed line) and less sensitive to the position of
the electron bubble between z ¼ 21 and 58 nm. At
T ¼ 0.3Tc, μðz ¼ 58 nmÞ=μðz ¼ 21 nmÞ ≈ 1.03. The tiny
depth dependence can be hardly observed by the experi-
ment. Although it seems that the value of the calculated
mobility is slightly larger than the experimental value, their
difference is smaller than the possible calibration error on
the experimental temperature. Thus, the calculated mobility
quantitatively agrees with the experimental result.
Note that, although the present experimental data were

measured under a magnetic field B ¼ 30 mT perpendicular
to the free surface, the experiment without a magnetic field
observed mobility with the same temperature dependence
of them [24]. The magnetic field leads to a gap μnB in the
excitation energy of the surface bound state [17], where μn
is the nuclear magnetic moment of the 3He atom. Since
μnB=Δ ∼ 0.01 for B ¼ 30 mT, the influence of the small
gap on the mobility is not observed in the experimental
temperature range owing to the small DOS of the surface
bound state in low energy. The confirmation of the field
independence of the mobility is evidence of the fact that the
surface Majorana fermion has linear dispersion. Field
dependence of the mobility will be observed in low
temperatures below kBT ∼ μnB.
The depth-insensitive mobility results from the cancel-

lation of the spatial variation of the squared local DOS of
the surface bound state proportional to sech4ðz=2ξÞ by the
depth dependence of the transport cross section σtrðE; zÞ in
Fig. 1(c). For the electron bubble far away from the free
surface, since the transport cross section has the depth-
independent spectrum in Fig. 1(b), the drag force η∥ from
the Majorana fermions decreases proportionally to the
squared DOS and the mobility approaches to the bulk
value μbulk. The depth dependence of μbulk − μ at T ¼
0.3Tc is shown in the inset in Fig. 2. The difference
exponentially decreases with the scale of the coherence
length in the depth larger than z ¼ 5ξðT ¼ 0.3TcÞ.
Here, ξðT ¼ 0.3TcÞ ¼ ℏvF=2ΔðT ¼ 0.3TcÞ ≈ 138 nm.
Summary.—We have formulated the scattering theory on

Majorana fermions in the surface bound state by an
impurity in 3He-B. By applying the theory to the electron
bubble trapped below a free surface of 3He-B, we have
quantitatively reproduced the observed depth-independent
mobility in Ref. [24]. The depth independence is due to the
cancellation of the DOS of the surface bound state and the
suppression of the scattering cross section by the short
lifetime of the quasibound state around the electron bubble.
Owing to the quantitative agreement on the electron bubble
mobility by the experiment and this theory, we conclude
that the experiment has succeeded in observing Majorana
fermions in the surface bound state. The detected Majorana
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FIG. 2. Temperature dependence of the calculated mobility
(solid lines) compared with the experimental result (circles) in
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tion is less than 3% [41]. Inset: Depth dependence of the
calculated mobility at T ¼ 0.3Tc.
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fermions without a magnetic field should have ideal linear
dispersion due to the perfect agreement with the theoretical
expectation.
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