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Spontaneous emission of atoms in free space is modified by the presence of other atoms in close vicinity
inducing collective super- and subradiance. For two nearby atoms with a single decay channel the
entangled antisymmetric superposition state of the two single excited states will not decay spontaneously.
No such excited two-atom dark state exists, if the excited state has two independent optical decay channels
of different frequencies or polarizations. However, we show that for an excited atomic state with N − 1

independent spontaneous decay channels one can find a highly entangled N-particle dark state, which
completely decouples from the vacuum radiation field. It does not decay spontaneously, nor will it absorb
resonant laser light. Mathematically, we see that this state is the only such state orthogonal to the subspace
spanned by the atomic ground states. Moreover, by means of generic numerical examples we demonstrate
that the subradiant behavior largely survives at finite atomic distances including dipole-dipole interactions.
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Spontaneous decay of an excited atomic state towards
lower lying states via optical photon emission is a striking
consequence of the quantum nature of the radiation field
[1]. Introduced even before Einstein, the spontaneous
emission rate Γ ¼ ω3μ2=3ϵ0πℏc3, now called Einstein’s
A coefficient, is proportional to the squared transition
dipole moment μ2 between the upper and lower atomic
state and the third power of the transition frequency ω [2].
For several particles in close vicinity the emission

process is not independent but enhanced or reduced
collectively, depending on the emitters geometry [3,4].
These superradiant and subradiant collective states, where a
single excitation is distributed over many particles, are
entangled states [5,6]. Although a recent classical coupled
dipole model leads to subradiancelike phenomena as well
[7], the most superradiant and the perfect dark states for two
two-level quantum emitters with states ðjgi; jeiÞ are the
maximally entangled symmetric and antisymmetric super-
position states,

jψ�i ¼ ðjegi � jgeiÞ=
ffiffiffi
2

p
: ð1Þ

While superradiance on a chosen transition persists when
the atom possesses more than one decay channel, no
completely dark state for two atoms with several decay
paths from an excited state jei to a couple of lower lying
states jgii, as depicted in Fig. 1, is known. Since there are
alternative possibilities for decay in most atomic systems,
observing subradiance experimentally proves much more
difficult than seeing superradiance, as all decay channels
need to be blocked [8–11].
In this Letter, we introduce a generalized class of dark or

subradiant states for atoms with several independent
transitions. As a key result of this work we find that for
systems of N particles highly entangled multipartite states,

where N − 1 independent decay channels are suppressed,
exist. For these states the total dipole moments on all N − 1
transitions vanish simultaneously and, at least in principle,
any optical excitation in this state can be stored indefinitely.
Note that subradiance of multilevel atoms has been studied
before but decay was largely limited to a single degenerate
channel for all atoms and transitions [10].
After having introduced our model and the generalized

unique multipartite entangled dark states, we will discuss
the relation between subradiance and their special entan-
glement properties as well as possible quantum information
theoretical procedures to prepare them. Their mathematical
properties are detailed in the Supplemental Material [12]. In
the final part of the Letter we study subradiance for some
generic examples of three-level Λ-atoms, including dipole-
dipole coupling, where population of the dark state can be
accumulated via decay from multiply excited states.
Interestingly, a related phenomenon appears in V-type

atoms with two excited and one ground state, where a
single ground state atom can prevent decay of several
excitations as exhibited in the Supplemental Material [12].
Model.—Let us assume a collection of N identical

N-level emitters with a set of N − 1 low energy eigenstates

FIG. 1. Level scheme of an atom with several independent
decay channels of different polarization or frequency.
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jgii, where i ∈ f1;…; Ng, which are dipole coupled to a
higher energy state jei separated by the excitation energies
ℏωi (see Fig. 1). The atomic center of mass motion is
treated classically with fixed positions ri within a cubic
wavelength. For each atom i and transition j we define
individual Pauli ladder operators σi�j describing transitions
between the ith atom’s excited state jeii and its j lower
energy states jgjii, respectively.
The coupling of each atomic transition j of atom i, to the

electromagnetic vacuum leads to an individual free space
decay rate Γi

j. As all atoms are coupled to the same vacuum
modes, these decay rates are modified by pairwise inter-
actions with neighboring atomic transitions k, l, which
upon elimination of the field modes can be described by
mutual decay rates Γik

jl , with Γii
j ¼ Γj [3,18]. Note, that in

addition to the modified decay properties the collective
vacuum coupling induces resonant energy exchange terms
Ωik

jl as presented in Refs. [3,4,18,19].
As our central interest is the modification of the

collective emission rates, for simplicity, we will assume
a highly symmetric arrangement of the particles, so that all
particles acquire equal energy shifts, i.e., Ωik

jj ¼ Ωj, which
can be incorporated into effective transition frequencies
[19]. In terms of the operators defined above with the
excited state energy set to zero the dipole coupled atomic
Hamiltonian is given by

H ¼
X

i;j

− ω̄i
jσ

i−
j σiþj þ

X

i≠k

X

j

Ωik
j σ

iþ
j σk−j : ð2Þ

The full dynamics of the coupled open system including
decay is governed by a master equation for the density
matrix ρ of the whole system of N multilevel emitters,

∂ρ
∂t ¼ i½ρ; H� þ L½ρ�: ð3Þ

Following standard quantum optical assumptions and
methods the effective Liouvillian summed over all tran-
sitions and atom pairs reads [19,20]

L½ρ� ¼ 1

2

X

i;k;j

Γik
j ½2σi−j ρσkþj − σiþj σk−j ρ − ρσiþj σk−j �: ð4Þ

While this can be a complex and complicated expression
for a general arrangement [19], in the case of atomic
distances much smaller than the transition wavelength, all
Γik
j ¼ Γj become independent of the atomic indexes (i, k),

reducing to a single constant Γj. For simplicity, we also
assume equal decay rates on all transitions Γj ¼ Γ, i.e.,
equal dipole moments and Clebsch-Gordan coefficients
[21]. This will hardly be exactly true for any real atomic
configuration (besides J ¼ 0 to J ¼ 1), but it will not
change the essential conclusions below.

Collective atomic dark states.—Obviously, any atomic
density matrix ρg involving ground state populations jgii
only is stationary under L in a trivial way with L½ρg� ¼ 0.
Therefore, states ρe featuring atomic excitations, which will
still not decay under L, are much more interesting.
For the case of two two-level atoms such dark states are

well known and have been confirmed experimentally
decades ago [22]. They are antisymmetric superpositions
as introduced in Eq. (5), i.e., jψ2

di ¼ jψ−i. As a central
claim of this work we show that this formula can be
generalized to the case of N atoms with N − 1 independent
optical transitions between the upper state j0i ¼ js0i ¼ jei
and N − 1 lower states jii ¼ jsii ¼ jgii in the form

jψN
d i ¼

1ffiffiffiffiffiffi
N!

p
X

π∈SN

sgnðπÞ⊗
i
jsπðiÞi; ð5Þ

where the sum runs over all permutations π of N elements.
Using the criterion for pure states to be stationary under L
given in Ref. [23], we show in the Supplemental Material
[12] that this N-level state of total spin 0 is the unique
stationary state orthogonal to the subspace, where all
particles are in jgii for some i. A symmetric variant of
this state, denoted by jψN

sri, with all positive signs will be its
superradiant analogue.
The dark state has a zero total dipole moment μj ¼

hPiσ
i
ji ¼ 0 on any transition as a consequence of its

symmetry. This implies strong entanglement as discussed
inmore detail below. Indeed, those states are a special case of
complex entangled states, many of whose mathematical
properties have been considered before (see, e.g., Ref. [24]).
For three Λ atoms one explicitly gets

jψ3
di ¼

1ffiffiffi
6

p fjeg1g2i þ jg1g2ei þ jg2eg1i

− jeg2g1i − jg2g1ei − jg1eg2ig; ð6Þ

which is within the set of maximally entangled tripartite
states of qutrits [25].
As mentioned before, this state is stationary in the case of

H ¼ 0 and coinciding decay rates, Γik
j ¼ Γ (see also Fig. 3).

For more realistic situations, in Fig. 2 we consider a
subwavelength equilateral triangular configuration with
d ¼ 0.08λ. The subradiant decay resulting from the evolu-
tion governed by the master equation, Eq. (3), is shown. As
the atoms also experience energy shifts from the resonant
dipole-dipole coupling, Ωik

j , in Eq. (2), the dark states in
Eq. (5) will, in general, not be eigenstates ofH and dynamic
mixing with other states induces a finite lifetime as for two-
level dark states [26]. In this graph, in order to demonstrate
the subradiance effect more clearly, we have set Ωij

j ¼ 0.
Note that the subradiant states discussed here are not

the dark states appearing in a two-laser excitation of
Λ-type systems discussed in Ref. [27]. There, a particular
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superposition of ground states decouples from the laser
excitation for each atom separately and leads to a coherent
population trapping in the ground state manifold. The
notion of dissipative state preparation [23,28] has also
been used in Ref. [29]. There, it has been shown that three
M-shaped 5-level atoms interacting via three coupled
cavities and lasers can be driven into the state jψ3

di, where,
however, only atomic ground states are involved.
As an important consequence of the uniqueness of the

dark state, no such state can exist for a smaller number of
atoms. Therefore, when considering M atoms with N − 1
independent optical transitions between the upper state jei
and their N − 1 lower states jgii, where the emitted photons
on each transition are distinguishable, the following picture
emerges: for M < N only ground states are stationary
under L. In case M > N, however, extra stationary states
involving excitations can be found. They are given by
tensor products of states that are stationary for parts of the
system and superpositions of these states. To give a simple
example for the case M ¼ 6 and N ¼ 3 the states

jψi ¼ ðαjψ3
di ⊗ jψ3

di þ βjgigji ⊗ jψ3
di ⊗ jgkiÞ=

ffiffiffi
2

p
ð7Þ

are dark for any α, β ∈ C.
Entanglement properties of dark states.—Important

properties of the dark states jψN
d i will shortly be recapitu-

lated here as they provide important insights into the
physical origin of subradiance as well as possibilities to
prepare them. It has been shown via the construction of
generalized Bell inequalities for any N that there exists no
local hidden variable model describing their quantum

predictions [24]. Hence, jψN
d i has no direct classical

analogue. Moreover, it can be used to solve the Byzantine
agreement problem, the N strangers problem, the secret
sharing problem, and the liar detection problem [24,30].
What makes these states so useful for the above

mentioned tasks are their very special entanglement proper-
ties [24], which we briefly reiterate here (for more details
see Ref. [12]). First, note that the state is contained in the
maximally entangled set, which is a generalization of the
bipartite maximally entangled state [25]. The bipartite
entanglement shared between any of the particles and
the rest of the particles is maximal as it is for pairs of
two-level dark states. This property implies that the reduced
density matrix for any particle, j obtained by the partial
trace over all other particles is proportional to identity.
Hence, we see that each particle contains no individual
information and, in this sense, subradiance is a purely
nonlocal, nonclassical phenomenon.
An important property of jψN

d i is the fact that for all
invertible operators S, jψN

d i ∝ S⊗N jψN
d i. This symmetry

has several important consequences. If one particle is
measured in any basis and the measurement outcome
and chosen basis are announced, the other N − 1 particles
can be transformed to the state jψN−1

d i deterministically by
performing local unitary operations only [31]. This implies
that one can generate jψN

d i from jψN−1
d i with an extra atom,

as will be explained below.
Let us note here, that the geometric measure of entangle-

ment [32] can be computed easily and one obtains that
EgðjψN

d iÞ¼1−maxja1i;…;jaNijha1;…;aN jψN
d ij2¼1−ð1=N!Þ

[12,33]. Furthermore, it can be shown that the entanglement
contained in the state is persistent under particle loss [12,34].

FIG. 2. Upper state population decay of three interactingΛ-type
atoms in an equilateral triangle of size d ¼ 0.08λ ≪ λ, where
Γik
j ≈ 0.95Γj for all particles i, k with i ≠ k starting from the ideal

dark state (solid blue line). For comparison, the dashed black line
shows independent atom decay, while the dotted red line corre-
sponds to a fully symmetric state with superradiant decay on
both transitions. Coherent level shifts are neglected, i.e., Ωik

j ¼ 0

for all i, k.

FIG. 3. Upper state population decay for three closely spaced
Λ-type atoms for different singly excited initial states, where
Γik
j ¼ Γ and we neglect Ωik

j . The solid blue line corresponds to
the dark state jψ3

di, the dotted red line gives the case of the two
atom dark state for optically pumped atoms 1=

ffiffiffi
2

p ðjeg1i −
jg1eiÞjg1i and dashed green refers to an unpolarized product
state 1=

ffiffiffi
2

p ðjeg1i − jg1eiÞjg2i involving all three atomic states.
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Preparing collective dark states.—Let us now derive two
quantum information theoretical schemes to prepare the
state jψ3

di deterministically. Below, we will present dis-
sipative schemes to prepare them probabilistically. They
can be generalized to preparing jψN

d i for N > 3.
In both methods we initially prepare the state jψ−i ¼

ðj01i − j10iÞ= ffiffiffi
2

p
for two of the particles denoted as

particles 1 and 2, which can be achieved by applying a
CNOT to the two particles in the initial product state
ðj0i − j1iÞ= ffiffiffi

2
p

⊗ j1i.
In the first method we then prepare particle 3 in the state

j2i and apply the 3-qutrit gate e−i2π=9ðX⊗X⊗XþH:c:Þ, where
X ¼ j1ih0j þ j2ih1j þ j0ih2j, in order to obtain the state
jψ3

di up to local phase gates. This preparation procedure can
be verified easily realizing that X3 ¼ 1.
Alternatively, we prepare particle 3 in jþi ¼ ðj0i þ j1i þ

j2iÞ= ffiffiffi
3

p
and apply the two-qutrit unitaryU ¼ j0ih0j ⊗ X þ

j1ih1j ⊗ X2 þ j2ih2j ⊗ 1 on the particle pairs (3,1) and
(3,2) in order to obtain jψ3

di.
Let us point out, that given jψN−1

d i forN − 1 particles, the
state jψN

d i can be obtained by preparing particle N in
1=

ffiffiffiffi
N

p P
N−1
i¼0 ð−1ÞðN−1Þð1þiÞjii and applying U ¼ P

N−1
i¼0 jii

hij ⊗ Xiþ1, where X ¼ j0ihN − 1j þP
N−2
i¼0 jiþ 1ihij, to

all particle pairs ðN; jÞ. Hence, jψN
d i can be prepared

recursively.
In a similar manner the state jψN

sri can be prepared by
using jψþi instead of jψ−i as the initial state of particles 1
and 2 and omitting the minus sign in the initial state of
particle N. However, the properties of jψN

sri are very
different from jψN

d i, as, e.g., jψN
sri has much less sym-

metries. Another difference can be found in the geometric
measure of entanglement EgðjψN

sriÞ ¼ 1 − N!=NN [33,35],
which is much smaller than Eg for the dark state.
Dissipative generation of dark states.—As collective

excitation and emission is inherently nonlocal and built into
our model automatically, it will not only perturb a perfect
dark state but one can achieve preparation via collective
decay. In the following we will exhibit such collective
dynamics of the system for various configurations.
Again, we consider the case of three atoms with two

decay channels, i.e., three Λ systems, in a equilateral
triangle or, alternatively, an equidistant chain and numeri-
cally solve for the dynamics.
A simplemethod to prepare the dark state probabilistically

works as follows. We use the surprising fact that a nearby
atom in the final state of a chosen transition can be utilized to
suppress a particular decay channel of an atomic excitation.
To see that, we start from an antisymmetric two-atom state
jψ2

di ¼ ðjg1; ei − je; g1iÞ=
ffiffiffi
2

p
, which will not decay on the

first transition to jg1i. This state, however, decays on the
second transition towards ðjg1; g2i − jg2; g1iÞ=

ffiffiffi
2

p
. Now, let

us add a third atom in either of the two ground states.
As shown in Fig. 3, a third atom prepared in jg1i will not

prevent decay (dotted red line), while a third atom in the

state jg2i partially prevents decay and results in a finite
excited state population probability at long times (dashed
green line). Hence, after some time the system has either
decayed to ðjg1; g2; g2i − jg2; g1; g2iÞ=

ffiffiffi
2

p
or ends up in the

dark state jψ3
di. Thus, preparing two atom dark states in the

presence of other unpolarized ground state atoms is a key
route for a probabilistic preparation of dark states. In this
sense optical pumping as used in some experiments is
counterproductive.
It is known that in spatially extended systems with

nonuniform radiative coupling coefficients Γik
j no perfect

dark state but only long-lived subradiant states exist [36].
This implies that free space spontaneous decay from a
multiply excited state can also sometimes end up in such a
gray state [18] in close analogy to tailored deterministic
entanglement generation between the ground states of
interacting Λ atoms [37,38].
A central question now concerns the extent to which

such a dissipative preparation works for several indepen-
dent decay channels. By construction, the ideal dark state
jψN

d i is also decoupled from further symmetric laser
excitation. Hence, the state is dark in absorption as well,
similar to coherent population trapping in the ground state
manifold [27].
For another conceptually simple approach to preparing

the dark state we start from a totally inverted state jeeei for
three atoms placed at a suitable finite distance, where the
off diagonal elements of the matrix Γik

j acquire negative

FIG. 4. Decay of three Λ-type atoms in an equidistant chain of
distance d ¼ λ=4 with nonequal Γik

j starting from the totally
inverted state jeeei. The solid red line gives the excited state
population per atom, the dotted blue line shows the population in
the ground state subspace and the dashed-dotted black line gives
the dark state jψ3

di fraction during the decay. For comparison the
red dashed line exhibits ideal collective decay at d ¼ 0 with all
equal Γikj (Dicke case). Note that during the evolution the dark
(gray) state, which decays much slower, becomes populated
partially. Again, we neglect Ωik

j , which would lead to an
oscillatory behavior in the populations.
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values. As the dark component decays the slowest it should
survive at the end. In Fig. 4 we demonstrate this mechanism
for a three qutrit chain with a distance of d ¼ λ=4. A
comparison of the excited state fraction population for a
finite sized chain (red line) with the ideal collective decay
(dashed red line) shows a slowdown of the decay at late
times, where indeed a small fraction of the population ends
up in the dark state (black line). As the dark state has only
little overlap with any product state, this fraction is small
but can become relatively important at late times. Since
jψ3

di acquires a finite lifetime for finite distances, this
fraction eventually decays as well but at a much slower rate.
Conclusions.—As our key result we show that the concept

of dark or subradiant states can be generalized to multiple
decay channels, if one includes one more particle than decay
channels. The corresponding dark states are completely
antisymmetric, highly entangled multipartite states with a
plethora of quantum information applications. They can be
prepared by a sequence of bipartite or tripartite gates or via
tailored spontaneous emission frommultiply excited states in
optical lattices. A generalization to multiple excitations and
several excited states as well as including the motional
atomic degrees of freedom can be envisaged.
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