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The shot-noise limited peak sensitivity of cavity-enhanced interferometric measurement devices, such as
gravitational-wave detectors, can be improved by increasing the cavity finesse, even when comparing fixed
intracavity light powers. For a fixed light power inside the detector, this comes at the price of a proportional
reduction in the detection bandwidth. High sensitivity over a large span of signal frequencies, however,
is essential for astronomical observations. It is possible to overcome this standard sensitivity-bandwidth
limit using nonclassical correlations in the light field. Here, we investigate the internal squeezing
approach, where the parametric amplification process creates a nonclassical correlation directly inside the
interferometer cavity. We theoretically analyze the limits of the approach and measure 36% increase in
the sensitivity-bandwidth product compared to the classical case. To our knowledge, this is the first
experimental demonstration of an improvement in the sensitivity-bandwidth product using internal
squeezing, opening the way for a new class of optomechanical force sensing devices.
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Introduction.—Optical cavities can be used to enhance
the sensitivity of interferometric measurements of small
signals caused by a weak classical force acting on a movable
mirror. The motion of the mirror produces a phase modu-
lation on the light field, which then gets enhanced by
constructive interference with itself on the cavity round
trip. For any given light power inside the detector cavity,
increasing the cavity finesse improves the shot-noise limited
sensitivity but is necessarily accompanied by a proportional
reduction of the detection bandwidth [1,2]. This effect
limits the performance of all gravitational-wave detectors
(Advanced LIGO, GEO600, Advanced Virgo, KAGRA)
[3-6]. Typical gravitational-wave signals require high but
also broadband sensitivity: the signal from a binary black
hole merger, such as the one detected in September 2015 [7],
sweeps through the frequencies of the interferometer’s
detection band.

According to the Heisenberg uncertainty principle, one has
to increase the uncertainty in the light’s amplitude quadrature
in order to improve the measurement sensitivity by decreas-
ing the uncertainty in the light’s phase quadrature. Since
energy is needed to increase the uncertainty, the sensitivity
limit of an interferometer is set by the optical energy inside
the cavity [8,9]. In a more general case of arbitrary signal
waveforms, this consideration leads to the quantum Cramer-
Rao bound (QCRB) for the estimation of signal in Gaussian
quantum noise: at each signal frequency, the maximal phase
sensitivity is set by the size of the amplitude quadrature
uncertainty at the same frequency [10,11].
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Based on the QCRB, first of all, the concept of enhancing
the sensitivity with an optical cavity can be understood. Both
amplitude and phase quadratures resonate inside the cavity,
and have their uncertainties amplified within the bandwidth
of the resonance, and attenuated at other frequencies. In the
case of a coherent input field and a simple Fabry-Perot cavity,
the state remains coherent inside the cavity. The standard
sensitivity-bandwidth limit is defined as the maximum
product of a peak sensitivity S and a detection bandwidth
B, that can be achieved using coherent states of light and a
given light power P, inside the cavity [12]: Sx B <
8nP./(hAL), where A is the optical wavelength, L is the
cavity length, and 7 is the reduced Planck constant.

We introduce a set of different strategies for improving
the sensitivity of a cavity-enhanced interferometer beyond
the standard sensitivity-bandwidth limit. The first approach
is called the white-light cavity effect. It broadens the cavity
resonance without changing the finesse, in which case the
uncertainty of the amplitude quadrature must increase
above the vacuum level. Recently, it was proposed that
the white-light cavity effect can be achieved by using an
anomalously dispersive medium inside the interferometer
[13-22].

The second approach is called external squeezing.
In this case, the uncertainty of the optical field injected
in the interferometer is squeezed below the vacuum level in
the phase quadrature, without influencing the signal
enhancement due to the optical cavity [3,23-26]. The
bandwidth remains unchanged, and hence, the standard
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sensitivity-bandwidth limit is surpassed due to the
increased peak signal-to-noise ratio.

The third approach is internal squeezing [27-29]. Here,
squeezed states of light are produced inside the detector’s
cavity, for instance, using an optical parametric amplifier.
In contrast to external squeezing, in this approach, the
phase quadrature squeezing happens mainly inside the
optical cavity linewidth and affects both the noise and
the signal. The amplitude quadrature uncertainty is corre-
spondingly increased above the vacuum level, and in
accordance with the QCRB, the sensitivity increases: the
noise is squeezed more than the signal is deamplified. The
detection bandwidth narrows in this case, but the peak
sensitivity is increased even more strongly, which allows
the standard sensitivity-bandwidth limit to be surpassed.

In this Letter, we analyze the third approach theoretically
and report on a proof-of-principle experiment in which the
standard sensitivity-bandwidth limit was surpassed by
36%. We focus on surpassing this limit by considering
shot noise alone for sensing mirror displacement, ignoring
radiation-pressure noise. In practice, the radiation-pressure
noise can either be suppressed by increasing the mass of
mirrors [30], or evaded by using quantum nondemolition
measurement techniques, e.g., frequency-dependent homo-
dyne detection [8,31-33].

General concept.—We consider the propagation of a
signal through a Fabry-Perot cavity with a nonlinear crystal
inside, see Fig. 1. Pumping the crystal with light of the
doubled frequency leads to optical parametric amplification
of the cavity mode. The highest squeeze factor inside the
cavity is achieved around cavity resonance and is limited
to 6 dB. At this level, the threshold for optical para-
metric oscillation is reached, and the amplified amplitude
quadrature becomes unstable and causes lasing [34,35].
However, the squeeze factor outside the cavity is not
fundamentally limited due to destructive interference
between the incoming coherent field and outgoing squeez-
ing [36]. On the other hand, the signal originates from the
inside of the cavity, and does not experience such interfer-
ence. Therefore, the deamplification in the signal remains
limited to 6 dB. The resulting difference between noise
squeezing and signal deamplification constitutes the gain in
the signal-to-noise ratio (SNR), which represents the sensi-
tivity of the detector. On the other hand, the bandwidth gets
reduced, as the internal squeezing increases the sensitivity
only inside the cavity linewidth and leaves it unchanged
outside. Despite this, the sensitivity-bandwidth product
is enhanced, according to the QCRB, as we amplify the
amplitude quadrature fluctuations inside the cavity.

We present a simplified treatment of a mathematical
model of the system, leaving a rigorous treatment for the
Supplemental Material [37]. We define three quantities that
influence the cavity bandwidth: cavity decay rate through
the coupling mirror, squeezing rate, and the round-trip
optical loss rate, correspondingly
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FIG. 1. The three curves show the quantum measurement noise
of a cavity-enhanced interferometer with the same coherent light
power in its arms, normalized to a phase signal optical transfer
function. The peak sensitivity S is defined as inverse of the
minimum of the curves; the bandwidth 3 is the frequency at
which the noise rises by 3 dB above its minimal value. The
standard sensitivity-bandwidth product remains constant for a
given coherent light power inside the cavity: to increase the peak
sensitivity by 6 dB, the finesse F has to be increased by a factor
of 4, thus, the bandwidth decreases by the same amount (compare
blue dashed and green dashed-dotted curves). The internal
squeezing approach is depicted schematically on the subplot: a
phase quadrature of the input coherent light field is squeezed
inside the cavity, deamplifying the signal at the same time. Signal
deamplification is less than the amount of squeezing on the
detector, so the sensitivity increases. Increased amplitude quad-
rature, according to the QCRB, leads to enhancement of the
sensitivity-bandwidth product beyond the standard limit. There-
fore, when increasing the peak sensitivity by 6 dB of internal
squeezing, the resulting bandwidth is broader (red solid curve)
than the one achievable classically.
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where c is the speed of light, L is the optical length of the
cavity, t. is the amplitude transmissivity of the coupling
mirror, ¢ is the squeeze factor on a single pass through a
crystal, /% is the round-trip internal loss without the trans-
mission of the coupling mirror.

From the optical fields’ input-output relations we derive
the power spectral density of noise of the output field
detected by a balanced homodyne detector
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where Q is the signal frequency, n is total detection
efficiency including light propagation and the quantum
efficiency of the homodyne. Correspondingly, for the
optical transfer function 7(Q) of the phase modulation
signal through the cavity to the detector, we find
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The equations above lead to the definition of the
common bandwidth for the noise and the signal transfer
functions I' = y,. + y; + 7,. Then, we define the sensitivity
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(4)
Its peak value S=|T(0)*/S,(0) and bandwidth B are
given by

_ 8nP.yn
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B = \/ r2- 47/Cy577' (6)

From these equations, we can obtain an overall enhance-
ment in the sensitivity-bandwidth product

(SxB)/(S xB), o =TI 7)

For a given detection loss, there exists an optimal
squeezing factor that gives maximal enhancement, which
differs from the threshold value where the maximum
squeezing is achieved. This can be understood as follows.
The maximal detectable squeezing value is bounded by the
amount of optical loss. The loss of squeezing can be seen as
mixing with vacuum [41], therefore, above a certain value,
the increase in squeezing is not detectable any more, see
Eq. (2). However, the signal deamplification is independent
of the detection loss, and has a weaker dependence on the
internal loss, see Eq. (3). Therefore, increasing the internal
gain above a certain level leads to a larger detected
deamplification in the signal than suppression in the shot
noise level.

We experimentally test the presence of an enhancement in
the sensitivity-bandwidth product compared to the standard
limit and show the influence of the detection loss on it.

Experiment.—In our proof-of-principle experiment, the
signal is generated by injection of a phase modulated field
from the back of the Fabry-Perot cavity with an optical
parametric amplifier inside. In terms of signal detection and
observation of the internal squeezing effect, this approach
can be viewed as a one-to-one analogy to a detector with a
movable end mirror sensitive to the external force. The
advantage of our approach is that it allows signal generation
in a broad frequency band, which is necessary to observe
the change in the detection bandwidth.

The experimental setup, shown in Fig. 2, consists of
a second harmonic generation cavity, producing 775 nm
light for optical-parametric amplification of the longitudinal
resonance at 1550 nm of our internal squeezing cavity, here,
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FIG. 2. Experimental setup—The ISC is resonant for both the
fundamental wavelength 1550 nm and the second harmonic
wavelength 775 nm. Through the highly reflective (HR) back
mirror, a beam at 1550 nm is injected carrying a phase
modulation signal between 5.5 to 151 MHz and a sideband at
54 MHz for PDH cavity length stabilization. The output signal
consisting of squeezed light and deamplified signal sideband is
detected on a balanced homodyne detector using 2.8 mW local
oscillator (LO) power, with an overall detection efficiency of
~85%. The phase of the local oscillator is actively stabilized to
the phase quadrature, and the phase of the pump is stabilized to
produce squeezing in the phase quadrature.

simply called “ISC.” The cavity has an optical length of
L =2.77 cm, an optical linewidth of y. ~ 2z x 54 MHz,
and contains a periodically poled KTP (PPKTP) crystal [42].
A control field at 1550 nm with a phase-modulation signal
imprinted on it is injected from the highly reflective back side
of the ISC. The signal is produced by the broadband fiber
electro-optical modulator (EOM). The cavity length is sta-
bilized via the Pound-Drever-Hall (PDH) locking technique
[43,44]. The ISC has two locking modes—with and without
the pump light. When the measurements with squeezing are
taken, the cavity length is stabilized with 775 nm light, while
the 1550 nm control field is used to stabilize the squeezing
angle on the phase quadrature. When the measurements
without squeezing are taken, the 775 nm pump is off, and the
cavity length is stabilized with the 1550 nm control field. The
signal with or without squeezing is detected with a high-
efficiency broadband homodyne detector with a bandwidth
of ~800 MHz and dark noise clearance of ~13 dB in the
frequency range of interest from 10 to 200 MHz.

We create a phase modulation signal at different frequen-
cies. At each frequency, we detect the signal together with
the noise on the homodyne detector in two regimes: with the
optical parametrical amplification being on and off. This
allows us to observe how the signal gets deamplified,
and noise—squeezed. From the squeezing spectrum we
estimate the experimental parameters: squeezing factor ¢,
transmissivity of the coupling mirror ¢,, internal loss /2, and
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detection efficiency 5. The fitted upper bound on the internal
loss of /> < 2300 ppm, which results in in the round-trip loss
bandwidth of y; < 27 x 743 kHz < y,, is consistent with
the previously measured absorption of a PPKTP crystal [45],
and the manufacturer specified transmissivity of the back
mirror (2 = 0.05%@1550 nm) and bound on the antire-
flective coating of the crystal (r> < 0.1%). The coupling
mirror transmissivity of 2 = 15%@1550 nm is confirmed
by an independent measurement of the cavity finesse. The
detection loss estimation is also bounded within 1% of the
estimated value by comparing squeezing and antisqueezing
spectra [42,46]. We use these estimated parameters to
calculate the expected theoretical spectrum of the signal
deamplification and compare it with the measured values.

Figure 3 compares noise squeezing with signal deam-
plification; the difference between the two data sets directly
demonstrates the increase in the SNR, corresponding to an
enhancement of 26% in the sensitivity-bandwidth product
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FIG. 3. Beating the standard sensitivity-bandwidth limit with
internal squeezing. In the main plot, we demonstrate the increase
in the signal-to-noise ratio for a total quantum efficiency of 0.82:
squeezing data (green rthomb) with fit (green dashed line), from
which the squeezing factor is estimated; the signal deamplifica-
tion is represented by the red dots. It is compared to the results
of the theoretical modeling (black solid line) with parameters
obtained from the squeezing measurement, where the grey area
represents the confidence interval based on the estimation error.
The subplot shows four experimentally achieved enhancement
factors (26%, 31%, 33%, 36%) representing four different overall
quantum efficiencies, together with theoretical curves versus
detected squeeze factor. Two effects are demonstrated: the
dependence on the detection efficiency # (different curves) and
the existence of the optimal squeezing for each set of parameters.
The maximal enhancement in the sensitivity-bandwidth product
obtained in the experiment is 36% (red solid curve). The data on
the main plot corresponds to the green (dotted) curve with 82%
detection efficiency and 26% enhancement.

beyond the standard limit. We find the theory to be in good
agreement with the experimental data, lying within the
confidence interval obtained from the parameter estimation
error. We ascribe the observed discrepancies to the elec-
tronic resonances in the homodyne circuitry and wires that
are not taken into account in the theoretical analysis. Higher
enhancement factors are observed with a second homodyne
detector, which has less loss (but also stronger electronic
resonances). The dots in the subplot in Fig. 3 show four
experimentally achieved enhancement factors (26%, 31%,
33%, 36%) representing four different overall quantum
efficiencies.

Summary and outlook.—In summary, we provide a
unified view of three different nonclassical concepts for
improving the quantum measurement noise limited sensi-
tivity of cavity-enhanced laser interferometers. All of them
can be seen as concepts of beating the standard sensitivity-
bandwidth limit. Two of these concepts: “white-light cavity”
and “‘external squeezing,” have been investigated intensively
in recent years for the improvement of gravitational-wave
detectors [20,22,36]. In this work, the third concept, “internal
squeezing,” is investigated, theoretically as well as exper-
imentally and, also, in view of improving gravitational-wave
detectors. We presented the first experimental demonstration
of beating the standard sensitivity-bandwidth limit with
internal squeezing. In application to gravitational-wave
detectors, the nonlinear crystal would be placed in the dark
output port, between the central beam splitter and the signal-
extraction mirror [47]. At this position, the low light power
keeps thermally induced beam distortion as well as scattered
light due to the crystal at a minimum.

We note that all three concepts can, in principle, be
combined to maximize the overall improvement. The most
mature concept is external squeezing, as it is already
implemented in the gravitational-wave detector GEO 600
[3]. Since it avoids any deamplification of the signal and
squeezes shot noise in a broadband way, it provides more
improvement to the sensitivity-bandwidth product. Intere-
stingly, its sensitivity to intracavity loss is higher than that of
internal squeezing. This can be understood in the limiting
case when the cavity round-trip loss equals the coupler’s
transmissivity. In this case, the cavity is impedance matched
for external squeezing, and no squeezing gets reflected off
the coupling mirror. By contrast, in the internal squeezing
case, only half of the squeezing produced inside the cavity
is lost. The other half is coupled out through the mirror,
resulting in a maximal measurable squeeze factor of 3 dB.
Thus, based on our work, we propose to combine external
and internal squeezing to improve the sensitivities of
gravitational-wave detectors to values that are not possible
with external squeezing alone.
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