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An ion in a radio frequency ion trap interacting with a buffer gas of ultracold neutral atoms is a driven
dynamical system which has been found to develop a nonthermal energy distribution with a power law tail.
The exact analytical form of this distribution is unknown, but has often been represented empirically by
q-exponential (Tsallis) functions. Based on the concepts of superstatistics, we introduce a framework for
the statistical mechanics of an ion trapped in an rf field subject to collisions with a buffer gas. We derive
analytic ion secular energy distributions from first principles both neglecting and including the effects of
the thermal energy of the buffer gas. For a buffer gas with a finite temperature, we prove that Tsallis
statistics emerges from the combination of a constant heating term and multiplicative energy fluctuations.
We show that the resulting distributions essentially depend on experimentally controllable parameters
paving the way for an accurate control of the statistical properties of ion-atom hybrid systems.
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The advent of hybrid systems of cold ions immersed in
ultracold neutral atoms has opened up new perspectives for
exploring two- and many-body effects in a regime inter-
mediate between strong ion-ion and weak neutral-neutral
couplings [1–3]. A range of applications in atomic,
molecular, and chemical physics has recently emerged
including studies of ion-neutral collisions and chemical
reactions at very low energies [4–8], of many-body physics
in dense systems [9,10], and of the quantum dynamics of an
ion under the influence of an ultracold buffer gas [11,12].
Ion-atom hybrid systems are realized by superimposing

cold ions in a radio frequency (rf) trap with trapped
ultracold atoms [1–3]. rf traps use rapidly oscillating
electric fields to dynamically confine the ions. In an
adiabatic regime [13], the resulting motion of an ion can
be represented as a thermal component (“secular motion”)
superimposed by small-amplitude oscillations at the rf
frequency (“micromotion”) [13]. In a hybrid trap, the
ion undergoes frequent collisions with neutral atoms which
disrupt its motion and lead to energy exchange between the
secular motion and the rf field [14–19].
These processes lead to a distortion of the ion’s secular-

energy distribution from thermal (Boltzmann) to one better
described by a power law at high energy [16–18,20]. The
precise knowledge of the ion energetics is crucial for
understanding the properties and dynamics of hybrid
systems and their derived applications. Consequently, this
problem has been the subject of intense recent research
[16–19,21]. In the high-energy limit, expressions for the
mean energy and the power-law exponent have been
derived [18]. The complete ion-energy distribution has
often been modeled [12,16,22] by Tsallis (q-exponential)
functions [23,24],

eqðxÞ ¼ ½1þ ð1 − qTÞx�1=ð1−qTÞ ð1Þ

for qT > 1, where Cq is a normalization factor. qT is a
parameter which characterizes the deviation from a stan-
dard exponential function which is recovered in the limit
qT → 1. However, the application of q exponentials has
remained empirical [12,21,22] since their first introduction
for fitting numerical energy distributions [16].
Using the formalism of superstatistics [25,26], we

introduce a framework for the statistical mechanics of
ion-atom hybrid systems. We derive analytic ion secular-
energy distributions both neglecting and including the
thermal energy of the ultracold buffer gas and confirm
their validity by comparison with numerical simulations.
For a buffer gas at zero kelvin, we obtain an energy
distribution with no steady state and an exponential decay
at high energies. For a buffer gas at finite temperature, we
prove from first principles the emergence of Tsallis
statistics, thus vindicating its application in the present
context. The energy distributions derived here depend on
experimentally adjustable parameters, which opens the
door for a rational experimental control of the statistical
properties of ion-atom hybrid systems.
The motion in each direction rj, j ∈ ðx; y; zÞ, of an ion in

a quadrupole rf trap is given by the Mathieu differential
equations,

̈rjðτÞ þ ½aj − 2qj cosð2τÞ�rj ¼ 0; ð2Þ
where τ ¼ Ωt=2 and qj, aj are the Mathieu stability
parameters [27]. In a hybrid system, the ion interacts with
neutral atoms through a polarization potential. We treat the
dynamics as a series of elastic collisions in the Langevin
approximation with an energy-independent rate [18,28].
The velocity v of the ion after a collision is [17,18],

v0 ¼ 1

1þ ~m
v þ ~m

1þ ~m
vn þ

~m
1þ ~m

R · ðv − vnÞ; ð3Þ
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where ~m ¼ mn=mi is the ratio of the atom’s to the ion’s
mass, R is a rotation matrix [29], and vn is the velocity of
the neutral atom. Primes refer to postcollision quantities.
As we have no control over the instantaneous velocities of
the particles at the time of collisions, v and vn are random
variables. Generally, we denote the distribution f of a
random variable x as fxðyÞ, where the argument y indicates
the variable in which this function is expressed.
From Eq. (3), the ion’s secular energy after a collision

can be derived to be [30],

E0 ¼ ηEþ c1
ffiffiffiffiffiffi
Eϵ

p
þ c2ϵ; ð4Þ

where ϵ ¼ ðmn=2Þjvnj2 is the kinetic energy of the neutral
atom and η, c1, c2 are coefficients [30]. Assuming that the
buffer gas density is uniform, these coefficients are inde-
pendent of the values of E and ϵ. For an ion much hotter
than the buffer gas ðE ≫ ϵÞ, we approximate E0 ≈ ηE. The
stability of the ion motion in the buffer gas with respect to
runaway heating is determined by the distribution of η. As a
rule, the motion is stable for a mass ratio ~m≲ 1.4 for
Mathieu parameters q ≪ 1 [15–19].
Figure 1 shows numerical distributions fηðηÞ for the

energy-transfer parameter η for q ¼ 0.1, ~m ¼ 0.75 and
q ¼ 0.5, ~m ¼ 1.25which correspond to stable and unstable
ion motions, respectively. The numerical simulations were
performed following DeVoe’s approach [16]. The solid
lines in Fig. 1 correspond to log-Laplace distributions of the
form [35]

fηðηÞ ¼
1

δ

a1a2
a1 þ a2

( ðδηÞa1þ1 η ≥ δ

ðηδÞa2−1 0 < η < δ;
ð5Þ

with a1, a2 > 0 which have previously been used to model
processes involving multiplicative fluctuations [35]. The
parameter δ representing the maximum of the distribution
was found to be ≈1, reflecting the fact that most collisions
result in minor changes to the ion’s energy. The values of a1

and a2 may be estimated by calculating the first and second
moment hηi and hη2i, respectively, of the distribution using
Eq. (5) and matching them to the expressions found
numerically from Eq. (4).
Let us now assume that the ion is initially prepared in a

thermal state at temperature T0, as may be the situation
after Doppler laser cooling [36,37]. The resulting distri-
bution for the ion’s initial energy E0 is

fE0
ðE0Þ ¼

Ek
0β

kþ1
0

Γðkþ 1Þ e
−E0β0 ; ð6Þ

where β0 ¼ 1=ðkBT0Þ, Γ is the Gamma function, and the
preexponential factor represents the density of states (k ¼ 2
for a three-dimensional harmonic oscillator [38]).
We now consider the effects of collisions with the neutral

atoms. Initially, we neglect their thermal energy and set
ϵ ¼ 0 in Eq. (4) such that E0 ¼ ηE0. The resulting energy
distribution can be written as [39],

fE0 ðE0Þ ¼
Z

η¼∞

η¼0

1

η
fE0

ðE0=ηÞfηðηÞdη

¼
Z

η¼∞

η¼0

1

η

ðE0=ηÞkβkþ1
0

Γðkþ 1Þ e−ðE0=ηÞβ0fηðηÞdη: ð7Þ

We first consider the case in which every collision multi-
plies the energy by a fixed amount ηc. The distribution for η
is then given by a Dirac δ function,

fηðηÞ ¼ δðη − ηcÞ; ð8Þ

so that

fE0 ðE0Þ ¼ E0kβkþ1
0

ηkþ1
c Γðkþ 1Þ e

−E0β0=ηc : ð9Þ

This is still a thermal distribution, except that it can now be
written in terms of β0 ¼ β0=ηc.
We now generalize this approach to an arbitrary fηðηÞ by

making the change of variables β0 ¼ β0=η in Eq. (7),

fE0 ðE0Þ ¼
Z

β0¼∞

β0¼0

E0kβ0kþ1

Γðkþ 1Þ e
−E0β0 β0

β02
fη

�
β0
β0

�
dβ0: ð10Þ

The energy distribution after a collision can thus be
represented by a superposition of thermal states. This
problem can be treated within the formalism of super-
statistics, i.e., the superpositions of several statistics as in
our case the ones of η and E in Eq. (7) [25,26,40].
We can now define a distribution for β0,

fβðβ0Þ ¼
β0
β02

fη

�
β0
β0

�
; ð11Þ

FIG. 1. Distributions of the energy-transfer factor η in ion-atom
collisions for q ¼ 0.1, ~m ¼ 0.75 (blue crosses) and q ¼ 0.5, ~m ¼
1.25 (red points) starting from a thermal state with ion temper-
ature T0 ¼ 1 mK. The points are binned normalized data from
100 000 numerical simulations of a collision. The lines represent
an empirical asymmetric log-Lapace distribution, see text.
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which is used to recast Eq. (10) into the form

fE0 ðE0Þ ¼
Z

β0¼∞

β0¼0

E0kβ0kþ1

Γðkþ 1Þ e
−E0β0fβðβ0Þdβ0: ð12Þ

Equation (12) has the form of a Laplace transform L. For
general distributions fβðβÞ, fηðηÞ one gets

fβðβ0Þ ¼
Z

η¼∞

η¼0

ηfβðηβ0ÞfηðηÞdη: ð13Þ

A repeated application of Eq. (13) and substitution into
Eq. (12) can then be performed to obtain the energy
distribution of an ion after n collisions.
Thus, we formulate a recurrence relation for β after

collision number i,

βi ¼ βi−1=ηi: ð14Þ
Since the ion is initially in a thermal state, we take β0 to be
constant. After n collisions starting from β0, we get

βn ¼ β0
Yn
i¼1

1=ηi: ð15Þ

Each value of η is assumed to be independently and
identically distributed, and so by applying the central limit
theorem the product

Q
n
i¼1 1=ηi is log-normally distributed

for large n [39]. Hence, from Eq. (11) we write

fβnðβnÞ ¼
1ffiffiffiffiffiffiffiffi

2πn
p

σβn
exp

�
−
ðln βn − ln β0 þ nμÞ2

2nσ2

�
;

ð16Þ
where μ ¼ hln ηi and σ2 ¼ hðln ηÞ2i − hln ηi2.
We now return to the energy distribution. By inserting

Eq. (16) into Eq. (12), we obtain,

fEn
ðEnÞ ¼

Z
βn¼∞

βn¼0

Ek
nβ

kþ1
n

ΓðkÞ e−Enβn

×
1ffiffiffiffiffiffiffiffi

2πn
p

σβn
exp

�
−
ðln βn − ln β0 þ nμÞ2

2nσ2

�
dβn:

ð17Þ
We use the Laplace integration method [41] to find an
approximate analytical solution for k ¼ 2. We obtain

fEn
ðEnÞ ¼

β̂3E2
n

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̂Ennσ2 þ 1

q expð−β̂EnÞ

×

"
erf

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̂Ennσ2 þ 1

2nσ2

s !
þ 1

#

× exp

�
−
nσ2

2
ðβ̂En − 2Þ2

�
; ð18Þ

where β̂ is the point at which the integrand of Eq. (17) is
maximal. In the high-energy limit for k ¼ 0, Eq. (18) has
been shown to exhibit an exponential decay [42,43]. From
the general property of the Laplace transform,

L½βkþ1fβðβÞ� ¼ ð−1Þkþ1
dkþ1

dEkþ1
L½fβðβÞ�; ð19Þ

it follows that if the high-energy behavior for k ¼ 0 is an
exponential decay, then this holds true for any integer value
of k. Thus, we conclude that a purely multiplicative model
of the heating process does not lead to Tsallis statistics,
which is characterized by a power-law tail for the distri-
bution at high energies.
In order to test the validity of Eq. (18), a series of

simulations were performed at a buffer gas temperature
T ¼ 0 K and varying the mass ratio or number of colli-
sions. The results are plotted in Fig. 2 along with the
distributions computed from Eq. (18). The μ and σ
parameters were computed from numerical distributions
fηðηÞ such as the ones shown in Fig. 1. At low collision
numbers, the agreement is generally poor, which is
expected due to the assumption in the derivation of
Eq. (18) that the central limit theorem can be applied.
Moreover, for all collision numbers, the agreement is not as
good at low energies due to the Laplace integration method
being valid only in the limit E → ∞. However, for higher
energies and numbers of collisions, Eq. (18) becomes an
increasingly better representation of the simulated data.
For comparison, the numerical data for 25 collisions at a

mass ratio of 1.0 are presented in Fig. 3 together with the

(a)

(b)

FIG. 2. (a) Energy distributions of an ion in a rf trap after n
collisions with a neutral buffer gas at zero kelvin with a mass ratio
~m ¼ mn=mi ¼ 1.5. (b) The ion-energy distribution after 25
collisions at a range of mass ratios. The lines show corresponding
energy distributions computed with Eq. (18). The points show
numerical data sampled after 100 000 simulations.
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distribution predicted using Eq. (18). The red dashed line
represents a Tsallis distribution obtained from a maximum-
likelihood estimation (MLE) to the numerical data. It can
be clearly seen that Tsallis statistics is a poor match for a
buffer gas at zero kelvin, while Eq. (18) provides much
better agreement.
Neither the energy nor the β distributions, Eqs. (18) and

(16), respectively, converge to a steady state with increasing
n. This is a known property of an unbounded multiplicative
random walk, and in the present case results from the
neglect of the temperature of the buffer gas allowing the ion
to reach an arbitrarily low temperature [20,44].
For a buffer gas at a finite temperature, we have to adopt a

different procedure as the change of the ion energy following
a collision is no longer a purely multiplicative process,
see Eq. (4). Because the buffer gas velocity distribution is
isotropic, the c1 coefficient averages to zero such that it can
beneglected.Weare thus leftwithE0 ¼ ηEþ c2ϵ. Assuming
again that the ion’s energy distribution can be represented as
a superposition of thermal states as in Eq. (10), it follows that
hEi ¼ ð1þ kÞkBhTi. This suggests that we can rephrase the
problem of finding an energy distribution to one of finding
the underlying temperature distribution. We approximate
that the contributions from ϵ in Eq. (4) can be treated as a
constant source of heating proportional to the temperature of
the buffer gas Ta which ensures that the ion’s steady-state
temperature is nonzero. This is a good approximation if the
thermal fluctuations of the buffer gas are much smaller than
the ones of the ion. The ion temperature after a collision is
then

Ti ¼ ηiTi−1 þ κTa; ð20Þ
where κ is a heating coefficient [30].
To find the required temperature distribution, we solve

the recurrence relation Eq. (20). The mathematical solution
of this problem has been outlined in Refs. [44,45] and leads
to a gamma distribution for β:

fβðβÞ ¼
1

βΓðnTÞ
e−βnT=hβi

�
βnT
hβi
�

nT
: ð21Þ

Multiplying by the density of states and applying the
Laplace transform we obtain the ion-energy distribution

fE;TðEÞ ¼
�hβi
nT

�
kþ1 Γðkþ nT þ 1Þ

Γðkþ 1ÞΓðnTÞ
Ek

ðhβiEnT
þ 1ÞkþnTþ1

:

ð22Þ
The parameter nT can be obtained from the condition [44]Z

η¼∞

η¼0

fηðηÞηnTdη ¼ 1: ð23Þ

This integral may be solved numerically, or alternatively
we make use of the empirical distribution equation (5).
From substituting Eq. (5) into Eq. (23), we obtain,

nT ¼ a1 − a2 ¼
hηi − 4hη2i þ 3hηihη2i
hηi − 2hη2i þ hηihη2i ; ð24Þ

assuming δ ¼ 1 in Eq. (5). To fully characterize Eq. (22),
we also require the value for hβi. From Eq. (20), it follows
that

hTi ¼ hηihTi þ κTa ¼
κTa

1 − hηi : ð25Þ

Averaging T ¼ 1=ðkBβÞ over Eq. (21), we get

hTi ¼ 1

kBhβi
nT

nT − 1
: ð26Þ

Equating Eqs. (25) and (26), we find

hβi ¼ 1

kBκTa

nT
nT − 1

ð1 − hηiÞ: ð27Þ

This derivation is valid only for nT > 1 and hηi < 1. If
either of these conditions is not met, the mean temperature
diverges because the ion motion becomes unstable.
The distribution Eq. (22) has the form of a q exponential

Eq. (1) multiplied by a Ek term. For k ¼ 0 (one dimen-
sional), it reduces to the standard q exponential, and for
k ¼ 2 (three dimensional) it is equivalent to the form used
in Ref. [12], if we set their exponent n ¼ nT þ 3. We have
therefore shown that Tsallis statistics are physically mean-
ingful for the present problem under the condition that the
variance of the thermal fluctuations are sufficiently small so
that the additive noise due to the thermal energy of the
atoms can be approximated as a constant.
Figure 4 shows a comparison of the MLE values of the

parameters nT and 1=hβi extracted from numerical simu-
lations with their predictions from Eqs. (24) and (27),
respectively. Below the critical mass ratio given by the
intersection of the curves with the gray horizontal line in
Fig. 4(a), the ion motion is stable. Up to near this point, the
predictions for both parameters are very close to the values

FIG. 3. Comparison between the ion-energy distribution
Eq. (18) for a buffer gas at 0 K (black dashed line) and a Tsallis
distribution (red dashed line) for an ion in a Paul trap after 25
collisions with a mass ratio 1.0. The points represent numerical
data sampled from 100 000 simulations.
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extracted from numerical data, vindicating the assumptions
leading to the derivation of Eq. (21). Above the critical
mass ratio, the predicted mean hβi becomes increasingly
inaccurate as a result of energy correlations between
different coordinate axes not accounted for in the present
model (see [18,30]).
From Eqs. (22) and (23), it becomes clear that the energy

distribution and therefore the statistical properties of the ion
depend on the buffer gas temperature and the distribution
fηðηÞ. The latter depends on system parameters such as the
atom-ion mass ratio and the Mathieu parameters of the trap
which are defined in advance by the experimenter. By
varying these parameters, fηðηÞ and therefore the Tsallis
distribution Eq. (22) can be tuned in a deterministic
manner, allowing for a control of the statistical properties
of the system.
Beyond the current application, the formalism developed

here represents a general framework for describing the
statistical mechanics of an ion in a buffer gas which can be
used to, e.g., compute thermodynamic functions [46]. The
present treatment can also be extended to localized buffer
gases. These developments will be reported elsewhere.
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