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Essential Conditions for Dynamic Interference
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We develop general quantitative criteria for dynamic interference, a manifestation of a double-slit
interference in time which should be realizable with brilliant state-of-the-art high-frequency laser sources.
Our analysis reveals that the observation of dynamic interference hinges upon maximizing the difference
between the dynamic polarization of the initial bound and the final continuum states of the electron during
the light pulse while keeping depletion of the initial state small. These two properties, Stark shift and
depletion, can be determined from electronic structure calculations avoiding expensive propagation in time.
Confirmed by numerical results, we predict that this is impossible for the hydrogen ground state but
feasible for excited states; this has been exemplified for the case of the hydrogen 2p state.
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Interference is a basic concept ruling optical as well as
quantum mechanical wave phenomena, most prominently
realized through variations of the double-slit scenario,
by means of photoelectron spectroscopy with short-
wavelength radiation even on an atomic level [1-4]. The
advent of intense laser pulses with a finite pulse length has
contributed a new natural double-slit scenario in the time
domain: A wave packet that is launched for some dynamic
reason at a certain time of the raising part of the pulse, in
principle, encounters the same laser envelope amplitude at
a certain time during the falling part of the pulse, con-
stituting a double slit in time. If the source for the wave
packet has not changed between the two “slits,” interfer-
ence of both wave packets with maximal possible contrast
results, depending on the time interval between the slits.
This scenario was experimentally seen [5] and theoretically
described [6] early on for bound-state population transfer
with low-frequency pulses. It was touched upon in the
context of stabilization study with the high-frequency
Floquet theory for above-threshold ionization [7,8] to
finally become topical under the name dynamic interfer-
ence in the soft x-ray domain for femtosecond pulses
[9,10]. Indeed, the breathtaking development of intense
light sources towards attosecond pulse lengths [11] and
x-ray frequencies [12] has tremendously broadened the
parameter range available for light-matter interaction and,
consequently, for the fundamental phenomenon of dynamic
interference.

In order to trigger experiments and gain an understand-
ing of the general phenomenon of dynamic interference, in
the following, we will work out the parameter windows
where dynamic interference is prominent on very different
scales of time and energy. Formulating the relevant proper-
ties of the laser pulse and the target electron leads us to the
appropriate theoretical framework for dynamic interfer-
ence. Making use of the minimal analytical model
described before [10], we will show that only its version

0031-9007/17/118(14)/143202(5)

143202-1

in the (reduced) velocity gauge can be safely used. As it
turns out, the same is true for numerical implementations of
dynamic interference, although for different reasons.
Surprisingly and in contrast to previous claims, we also
find that ionization of hydrogen from its ground state does
not exhibit dynamic interference, whereas ionization from
an excited state does indeed result in dynamic interference.

The soft x-ray regime we will be mainly concerned with
here (electron excess energies below 100 eV) is challenging
from a theoretical point of view, since single-photon
ionization in the vacuum ultraviolet regime cannot be
taken as the indication for a standard perturbative light-
matter coupling: First, there may be substantial depletion of
the ionized state during the pulse, and second, multiphoton
processes can be involved as indicated by appreciable
dynamic Stark shifts (also referred to as ac Stark shifts) of
energies. However, due to the weak transitions in the
continuum, multiphoton interaction does not lead to sub-
stantial multiphoton ionization, in contrast to infrared or
optical pulses [13].

For this intermediate regime of light-matter coupling,
which is neither fully perturbative nor does it lead to
multiphoton ionization, we will identify the two dimen-
sionless parameters 6 and y accounting for the dynamic
Stark shift and depletion of the initial state, respectively.
The appearance of dynamic interference depends on a
suitable ratio of these two parameters.

We start from the standard minimal-coupling
Hamiltonian written in the velocity gauge:

=2 [p + AN + V(). (1a)

N =

where V is some external potential and

A(1) = Ayg(r) cos(wt) (1b)
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is the vector potential of the laser pulse with a Gaussian
envelope ¢(t) = exp(—?/T?). We use atomic units
throughout the text unless noted otherwise. We represent
solutions |y(7)) of the time-dependent Schrodinger equa-
tion for (1) with an expansion into field-free (bound and
continuum) states ¢,:

(o) = 2 [ 00 Iw a0, (@)

where the exponential prefactor transforms away %Az(t)
appearing in (1a). We will call this new gauge the reduced
velocity gauge. The index «a comprises all quantum
numbers defining the eigenstate, which in the case of
continuum states are the energy E and the symmetry . The
standard 1st-order time-dependent perturbation theory
predicts the amplitude (of continuum states at energy E)

G5 =~y / AW EEdan () (3)

for ionization to a final energy E from initial energy Ej,.
The dipole matrix elements pg , = (@ |P|@i) connect the
initial state ¢;, to continuum states @g, of energy E.
Because of selection rules, only some of the matrix
elements are nonzero. For the photoeffect, implying weak
perturbations A (7), Eq. (3) allows for an explicit solution,
since one may assume that a;, () = 1 for all times.

For dynamic interference, however, the dynamic Stark
shift and the depletion of the initial state become relevant.
As long as the laser envelope varies slowly compared to the
laser cycle, the system remains in an adiabatic regime
where one may average the response of the system to the
laser field over the laser cycle to arrive at a formulation
solely expressed in terms of the laser envelope g(1).
Incorporated into (3), one obtains a modified coefficient
ai, (1) which still allows for a solution (at least in terms of a
stationary-phase approximation) as before [9,10]. Hereby,
the phase of a;, becomes time dependent:

ain (1) = a0 (4a)

P (1) =[5

with the ponderomotive energy E, and the dimensionless
function G, respectively, defined by pulse parameters

—iy/2]E,TG(t), (4b)

E,=20=_"_ (4c)

szé/hmmy (4d)

The derivative d¢ "/dt can be interpreted as the com-
plex, frequency- dependent energy of the initial state in the

continuum
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FIG. 1. Sketch showing the relation of the dynamic Stark shifts

A(t) of both the initial bound and final continuum states for (a) the
reduced velocity gauge A™ =1p>+ A(t)p + V(F), (b) the
b+ A(1)]> + V(£), and (c) the length
gauge H' = PP+ V() - %A(r) - T, respectively. See also
Sec. 2 of Supplemental Material [14].

: frvel __ 1
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laser pulse, proportional to the (peak) ponderomotive
energy E,. Thereby, § accounts for the Stark shift A [the
Stark shift is indeed the time derivative of the phase A(¢) =
SE,T(d/dt)G(1) = SE,(t) with E ,(t) = E,¢*(1)], and the
decay width y accounts for the depletion. Both constants
depend on the laser frequency w and can be derived from
the 2nd-order time-independent perturbation theory (see
Sec. 1 of Supplemental Material [14]) or equally extracted
from a numerical propagation [10]. Obviously, the minimal
description (4) is valid only as long as the Stark shift and
decay width are linear in E,,.

In Eq. (4), the dynamic Stark shift has been introduced
only to the initial state but not to the final state in the
continuum. This is legitimate only in the reduced velocity
gauge, where each state has just an intrinsic dynamic Stark
shift as shown in Fig. 1(a), with the one for the continuum
being in general negligible. This also applies to the velocity
gauge [Fig. 1(b)], where all states have an additive ponder-
omotive shift, which can be easily removed by a global
phase in the wave function as done in Eq. (2). By contrast,
in the length gauge the ponderomotive shift cannot be
easily separated, as indicated in Fig. 1(c). There, to a good
approximation [17], the Stark shift of continuum electrons
is given by the ponderomotive energy. Consequently, the
intrinsic Stark shift of any continuum state in the reduced
velocity gauge is rather small and negligible, rendering the
description with Eq. (4) adequate.

As just emphasized, in the length gauge the (trivial)
ponderomotive shift cannot be split off the initial or final
states and therefore has to be covered by any convergent
numerical calculation, which is typically much more
demanding than in the velocity gauge (e.g., many more
partial waves are required). This is the reason why it has
been noted in long-wavelength strong-field physics that the
velocity gauge is preferable for numerical calculations
[18,19].

From Fig. 1, one obtains an intuitive understanding
regarding the mechanism behind dynamic interference
independent of the gauge: The initial-state energy increased

143202-2



PRL 118, 143202 (2017)

PHYSICAL REVIEW LETTERS

week ending
7 APRIL 2017

_I T I L I L I T I_ 0 T IIIIIII T T IIIIIII
o ! @4 10E (b 3
F10""W/em’ . £ ]
r 3 ] 10’l = -
ofF /L A\ N\ N E 3
= C ]
=1 1 10°F =
£ F10"°W/em” 1 3 3
E1d E o ]
- AN 1 10°F =

E 10 W/em? | ] 4 ;_ hydrogen 1s
10 E E
11 I | I | I | I I | I 11 E L 111 IIII 1 1111 III =
39.5 40.0 40.5 100 1000
electron energy E [eV] photon frequency ® [eV]
FIG. 2. (a) Photoelectron spectra for 1s hydrogen exposed to

10 fs pulses with a carrier frequency of @ = 53.60 eV for
intensities 7, = 10%/* x 10" W/cm? with k=0,1,...,8. The
dashed line marks the energy E, = E;; + @ = 40 eV. The result
of the minimal model (4) is shown for two intensities by dot-
dashed lines. (b) Dimensionless parameters 5(w) and y(w) for the
hydrogen 1s state as introduced in Eq. (4) and defined in detail in
Sec. 1 of Supplemental Material [14]. The asymptotic behavior of
them for @ — oo is given for both [20]. The green arrow marks
the frequency @ = 53.6 eV used in the left panel and in previous
publications [9,10].

by w for single-photon absorption may intersect the energy
E of the final state at two points (in time). These time
instants are stationary-phase points where the time deriva-
tive of the phase in the integral (3) vanishes; hence, the
amplitudes at these two dominate the integral constituting
the two-slit scenario. Dynamic interference will be most
pronounced if the Stark shifts of initial and final states are
very different. Quantitative details as well as the possibility
for dynamic interference in the first place depend, of
course, on the parameters entering the phase, namely,
the electronic response properties 5(w) and y(w) in con-
nection with the pulse properties E,, and T, which we will
analyze next.

From the minimal model (4), it is easy to see that two
conditions must be fulfilled for dynamic interference:
(i) The Stark shift must be larger than the bandwidth of
the pulse with length 7 in order to be energetically
resolved, and (ii) depletion should be sufficiently weak
in order to have ionization in the rising and falling wings of
the pulse. In order to quantify these conditions, we note

that the bandwidth of the pulse (1b) is v/2/T and that
G(0) = /x/2. Thus, on one hand, condition (i) is satisfied
if

V2

8E, >V2/T or E,T> = (5)

On the other hand, condition (ii) is fulfilled if

4 2/x
EEpTG(O) <1 or EpT<T. (6)

These two conditions give lower and upper limits for the
product E,T. Apparently, they can be met simultaneously
—thus allowing for dynamic interference—only if

8>\, (7)

which implies that in the competition between the Stark
shift and depletion the former should dominate. This
condition holds for any atom or molecule. As a conse-
quence, we can predict the laser parameters for which one
will observe dynamic interference, provided the response
parameters 5(w) and y(w) are known. They are shown in
Fig. 2(b) for the ground state of hydrogen as an example.

Having condition (7) in mind, one sees from Fig. 2(b)
that this requires frequencies larger than @ = 265 eV [21],
where y(@) = 8(@) holds. This is confirmed by the
numerical photoabsorption spectra in Fig. 2(a) determined
by the direct propagation of the time-dependent
Schrodinger equation in the (reduced) velocity gauge for
the photon frequency @ marked by the green arrow in
Fig. 2(b). Numerical details are given in Sec. 3 of
Supplemental Material [14]; the parameters used are
Cmax = 4, Tmax = 3000ay, n = 3000, and E, ., ~ 134 eV.
As one can see from Fig. 2(a), the spectrum has a single
photoelectron peak which gets Stark-shifted and broadened
for increasing intensities while keeping the pulse length
fixed at 7' = 10 fs. The results have been confirmed with
two other packages [22,23] for the numerical propagation
of the time-dependent Schrodinger equation.

In contradiction to these results, dynamic interference has
been reported for the hydrogen ground state [9,10,24,25].
Even more puzzling, the numerical findings (obtained in the
length gauge) seem to be supported by corresponding results
from the minimal model in the length gauge appearing in
the same papers. It is very rare and unfortunate that two
independent mistakes, both related to a faulty usage of the
length gauge, one in the model and one in the numerical
calculation, should lead to agreeing results, seemingly
reassuring the findings regarding dynamic interference [26].

The analytical mistake is easy to identify and originates
from using the minimal model (4) in the length gauge
but leaving out the Stark shift in the continuum state [see
Fig. 1(c)]. Thereby, the difference between the time-
dependent energies of initial and final states is artificially
increased, leading to the appearance of stationary-phase
points of the integrand in (4) at the wrong intensities. The
numerical calculations were carried out in the length gauge
with a limited number of partial waves, not enough to
properly describe the ponderomotive motion of the elec-
tron. This parallels the mistake in the analytical model,
where the ponderomotive energy dependence was left out
and therefore leads to the accidental agreement of numeri-
cal and analytical calculations in those papers [9,10,24,25].
A detailed comparison of numerical calculations in the
length and velocity gauges for different maximal angular
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FIG. 3. Photoelectron spectra for 10 fs pulses with a carrier frequency of @ = 12 eV for hydrogen in the 2p state. Ionization into the

s channel (a) and the d channel (b) is shown. The intensities from bottom to top are I, = 10%/3 x 10" W/cm? with k =0, 1, ..., 8.
The dashed line marks the energy E, = E;, +® =28.59875 ¢V, and the dotted line interpolates between the energies
E, i = Ey, +®—E,(I;). The s channel is scaled by the factor f in order to make the height of the peak equal in the perturbative
limit: f = |pg, |/|Pg, 4| ®6.137. The result of the minimal model (4) is shown for two intensities by dot-dashed lines.
(c) Dimensionless Stark shift § for the 2p state of hydrogen as a function of the photon frequency @ in units of the ponderomotive
energy 6 = A/E,. We show 8" = 5" (blue solid curves) and 54 = §*°! — 1 (blue dashed curves); cf. Sec. 2 of Supplemental Material
[14]. The green arrow marks the photon frequency @ = 12 eV, where the Stark shift vanishes and which was used in the two left panels.

The Stark shift diverges at the transition energy E,, — E, (gray solid line).

momenta can be found in Sec. 3 of Supplemental
Material [14].

Extrapolating from the conditions for dynamic interfer-
ence in ionizing hydrogen, it seems very difficult to realize
this phenomenon with state-of-the art laser systems. Yet,
this can be easily achieved starting from the 2p excited
state, which at the same time highlights the relevance of
considering the proper Stark shifts. Starting from 2p and
choosing appropriate intensities and frequencies of the
laser, we can prepare an effective initial state which has no
Stark shift in the length gauge (or a large negative Stark
shift in the reduced velocity gauge). This implies a large
difference in the Stark shifts between the continuum and
initial bound states and therefore offers excellent conditions
for dynamic interference.

At a frequency of @ = 12 eV, the dynamic Stark shift of
the 2 p state vanishes (in the length and velocity gauges) and
is therefore given by A(t) = —E ,(¢) in the reduced velocity
gauge, as can be seen in Fig. 3(c). At this frequency, the
coupling to the 1s state fully compensates the coupling to all
other states such that the polarizability and the Stark shift
vanish. We have performed a propagation with the same
parameters as before and obtained the spectra shown in
Figs. 3(a) and 3(b); cf. details in Sec. 2 of Supplemental
Material [14]. Since we start from a p state, photoelectrons
are emitted into s and d channels, where the yield for the latter
is larger due to the larger dipole matrix element. However,
qualitatively, both angular momentum channels exhibit the
same behavior for increasing intensities /. For low intensities,
the spectrum is Gaussian-shaped and slightly redshifted with
respect to E,, = E;, + w. This shift increases with larger /,
and for 1> 5x 10" W/cm? one clearly sees dynamic

interference in both channels. We note in passing that,
according to earlier publications [9,10], one would not
expect any dynamic interference at all here. Moreover, in
contrast to the blueshift predicted previously, we observe a
redshiftincreasing with intensity which follows directly from
A(r) < 0 mentioned above.

In summary, by formulating single-photon ionization in
the Ist-order time-dependent perturbation theory with
phases obtained from the 2nd order, we have derived
quantitative conditions under which dynamic interference
can occur. The approach is tailored towards the dynamic
regime of nonperturbative single-photon ionization, char-
acteristic of interactions with intense soft x rays, and has
allowed for the separation of the frequency-dependent
response of the electronic system in terms of Stark shift
5(w) and depletion y(w) and the time-dependent laser pulse
envelope. This separation facilitates the determination of
the electronic response by electronic structure calculations
and helps to accurately assess experimental conditions for
dynamic interference.
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