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Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also
generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy
anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in 21

10Ne are
used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of
the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous
experiments: the speed of light is isotropic to a part in 1028.
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A special role in the foundation of the theory of relativity
was played by the Michelson-Morley experiment searching
for the anisotropy in the speed of light. Recent experiments
found that the speed of light is isotropic at a level
of 10−17–10−21 [1–5]. In Ref. [6] it was noted that this
limit may be improved to the level of about 10−29 using the
NMR-type experiment [7]. Similar anisotropy in the
maximal attainable speed for massive particles has been
constrained for nucleons by NMR experiments (see, e.g.,
Refs. [7–11]) and for electrons using optical atomic
transitions [4,5]. Observation of these or other effects
of the Local Lorentz Invariance Violation (LLIV) may
pave the way to a new, more general theory (see, e.g.,
Refs. [12–20]).
Violations of Lorentz symmetry in the photon sector are

parametrized in the standard model extension (SME) [20]
by the tensor ðkFÞαβμν. In the presence of Lorentz viola-
tion, the Coulomb potential of a point charge becomes
anisotropic [13],

ΦðrÞ ¼ q
r
ð1þ ðκDEÞijninj=2Þ; ð1Þ

where κijDE ¼ −2ðkFÞ0i0j are the tensor components char-
acterizing the anisotropy in the Coulomb potential and
ni ¼ xi=r are the unit vectors along the radius vector in the
rest frame of the charge. This equation also gives the
approximate potential in any frame that is moving slowly
with respect to the point charge.
A nucleus that has a finite electric quadrupole moment in

the absence of LLIV will exhibit a spatial energy anisotropy
due to LLIV caused by the electrostatic interactions of the
valence protons with the anisotropic Coulomb potential of
the nuclear core. The shift of the electrostatic energy due to
the LLIV correction in Eq. (1) can be written as

δE ¼ ðκDEÞijMij; ð2Þ

where Mij is the nuclear tensor which we calculate here.
Below we establish a proportionality relation between Mij

and the experimental value of the nuclear electric quadru-
pole moment tensor Q, namely, Mij ¼ KQij. An estimate
of the coefficient K allows us to provide estimates of the
LLIV shifts for all nuclei and extract the limits on LLIV
constants from corresponding experiments.
We start from a simple analytical estimate of the

proportionality coefficient K. To obtain the LLIV correc-
tion to the electrostatic potential of a finite size charge
distribution one has to integrate Eq. (1) with a charge
density distribution, and the result will not be a simple
product of the unperturbed nuclear electrostatic potential
Φ0ðrÞ and the LLIV factor ½1þ ðκDEÞijninj=2�. However,
to clarify the dependence on the parameters of the problem
it is instructive to start from a simple estimate assuming
ΦðrÞ ≈Φ0ðrÞ½1þ ðκDEÞijninj=2�. Below we will also
perform an accurate integration of Eq. (1) with a realistic
charge distribution; this gives a more accurate value of
the proportionality factor K. We find that the LLIV shift of
the electrostatic energy δE ¼ ðκDEÞijMij, may be expressed
via the nuclear electric quadrupole moment. Indeed, the
quadrupole moment tensor is

Qij ¼
Z

ð3ninj − δijÞρðrÞr2d3r; ð3Þ

where ρðrÞ is the proton number density. The correction
to energy produced by the LLIV part of the potential
Φ0ðrÞðκDEÞijninj=2 may be presented as δE ¼
ðκDEÞijMij, with

Mij ≈
e
6

Z
ð3ninj − δijÞρðrÞΦ0ðrÞd3r: ð4Þ

We subtracted δij in the expression above since it does
not produce any anisotropic LLIV effect. We see that the
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angular factors in the integrals Eqs. (3), (4) are the same, we
only need to evaluate the radial parts. It is convenient to
separate the spherically symmetrical part and the angular-
dependent part of the density:

ρðrÞ ¼ ρ0ðrÞ þ ρ2ðrÞ: ð5Þ

For a deformed nucleus of a constant density ρ the
nonspherical (mainly, quadrupole) part of the density
ρ2ðrÞ is responsible for the deformation and may be viewed
as a correction to the density located near the nuclear
surface. Indeed, for a spherical nucleus of a constant
density ρ the correction ρ2 ¼ ρ outside the spherical
nuclear edge (on the z axis, for the angle θ ¼ 0) makes
one axis longer and ρ2 ¼ −ρ in the perpendicular direction
(for the angle θ ¼ π=2) makes another axis shorter; i.e.,
ρ2ðrÞ transforms the spherical nucleus into the spheroidal
one. The electrostatic potential near the nuclear surface is
equal to Φ0ðrÞ ≈ Ze=R and is continuous across the sur-
face. So, for small quadrupolar deformations we obtain
from Eqs. (3), (4) the relation between M ¼ Mzz and
Q ¼ Qzz:

Mestimate ∼
1

6

ðZ − 1Þe2Q
R3

: ð6Þ

Note that we replaced the nuclear charge factor Z by Z − 1
to account for the charge quantization. Indeed, to exclude
the interaction of a proton with itself the result must vanish
for Z ¼ 1. Transformation from the frozen body frame to
the laboratory reference frame does not change the ratio
M=Q.
We have also performed numerical calculations of the

correction to the energy due to the LLIV part of the
electrostatic potential Eq. (1) for the interaction of the point
charges using the accurate numerical integration

δE ¼ 1

2

Z
Φðr1 − r2Þρðr1Þρðr2Þd3r1d3r2: ð7Þ

For the density ρðrÞ we assume the model of the
spheroidal nucleus with a constant charge density and
the nuclear radius given by R ¼ R0½1þ βY20ðθ;ϕÞ�. We
have found that the numerical results in this model for
nuclei with different R, Z, and Q may be approximated by
the analytical formula

M ¼ 0.06
ðZ − 1Þe2Q

R3
¼ 0.055

Z − 1

A
Q
fm2

MeV: ð8Þ

We assume the nuclear radius R ¼ 1.15A1=3 fm, where A is
the number of nucleons. The ratio M=Q changes by about
�10% as β changes from 0 to 0.4, as shown in Fig. 1, so the
result can be applied to all nuclei. The experimental values

of the nuclear quadrupole moments Q may be found in the
tables [21]. For the 21

10Ne nucleus Q ¼ 10.3 fm2, and we
obtain M ¼ 0.25 MeV.
Now we can extract the limits on the coefficients ðκDEÞij

responsible for the asymmetry in the speed of light from the
measurements of LLIV in the 21

10Ne nucleus [7]. We are
interested in two contributions,

δE ¼ ðκDEÞijMij − cijPij: ð9Þ

The coefficients cij characterize anisotropy in the maximal
attainable speed for massive particles or the anisotropy in
the kinetic energy term, which in the nonrelativistic limit
may be presented as −cijPij, as derived in Ref. [17]. Here
the tensor Pij ¼ h3pipj − p2δiji=6m, p, and m are the
particle momentum and mass. In Ref. [7] the limits on cij
for neutrons were obtained assuming ðκDEÞij ¼ 0:

cXn ¼ cYZn þ cZYn ¼ ð4.8� 4.4Þ × 10−29;

cYn ¼ cXZn þ cZXn ¼ −ð2.8� 3.4Þ × 10−29;

cZn ¼ cXYn þ cYXn ¼ −ð1.2� 1.4Þ × 10−29;

c−n ¼ cXXn − cYYn ¼ ð1.4� 1.7Þ × 10−29: ð10Þ

The limits on the cij above have been obtained assuming
the Schmidt (single valence neutron) value Pn ¼ Pn

zz ¼
−0.66 MeV [7]. More accurate calculations of P [6,22]
have shown that both neutrons and protons contribute to
cij. According to Ref. [22] Pp ¼ 0.54 MeV, Pn ¼
0.57 MeV and the experimental limits on cij actually
contain the linear combination c ¼ −ð0.8cp þ 0.9cnÞ. In
Ref. [6], the recommended values for the matrix elements
are Pp ¼ 0.47 and Pn ¼ 0.7 MeV, so the results of the two
approaches are quite consistent. We need to add the photon
contribution ðκDEÞij calculated in the present work with
M ¼ 0.25 MeV. This gives the linear combination of the
coefficients that are constrained by the experimental
measurements in 21Ne presented above:

FIG. 1. Dependence of the ratio M=Q on the nuclear quadru-
pole deformation size β.
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cXn þ 0.9cXp − 0.4κXDE ¼ −ð5.3� 4.9Þ × 10−29;

cYn þ 0.9cYp − 0.4κYDE ¼ ð3.1� 3.8Þ × 10−29;

cZn þ 0.9cZp − 0.4κZDE ¼ ð1.3� 1.6Þ × 10−29;

c−n þ 0.9c−p − 0.4κ−DE ¼ −ð1.6� 1.9Þ × 10−29: ð11Þ

It is instructive to compare these calculations to the
case of Coulomb interaction in atoms. For example, for an
electron in a one-electron atom, one can write the main
LLIV energy contributions as

δE ¼ −
Ze2

r

ðκDEÞijninj
2

− cijpipj=m: ð12Þ

The two terms can be related to each other using a
generalization of the virial theorem. In particular, for an
atomic eigenstate

dhpirji
dt

¼ 0 ¼ i
ℏ
h½H;pirj�i; ð13Þ

where H ¼ −Ze2=rþ pipi=2m. It follows that

�
pipj

m

�
¼

�
Ze2ninj

r

�
: ð14Þ

The virial theorem is valid in many-electron atoms too.
We should include double sum over interaction energies of
all particles into the Hamiltonian and make corresponding
changes in the equations above. Therefore, for any atom
with the electron energy dominated by the nonrelativistic
Hamiltonian, the two LLIV terms always enter as a
combination ðκDEÞij=2þ ci;j.
A similar result can be derived using a coordinate

transformation xμ → xμ − ðkFÞαμανxν=2, which removes
Lorentz violation in the photon sector and modifies the
electron LLIV coefficients cμν → cμν þ ðkFÞαμαν=2, as dis-
cussed in Ref. [23]. Using Riemann tensor symmetries of
the ðkFÞαμαν tensor one can show that ðkFÞαjαk ¼ ð~κe−Þjk for
the traceless components of the tensor. Furthermore, by
imposing stringent constraints on birefringence compo-
nents of the photon LLIV tensor keþ at a level of 10−38 [24],
one obtains ðκDEÞij ¼ ð~κe−Þij for the traceless components.
Hence in an atom held together by Coulomb interactions
only one linear combination of the ð~κe−Þij and cij tensors
can be measured. This relationship based on a coordinate
transformation was used to relate the photon sector coef-
ficients to the electron cij coefficients in Ref. [5].
The situation is different in the nucleus, where the

relationship (14) does not hold since the total potential
energy is dominated by strong interactions. Note that the
linear combination in Eqs. (11) has the opposite sign
between the nucleon and photon coefficients because the
Coulomb potential energy is positive in the nucleus, unlike

an atom. Our calculations implicitly assume that there is no
LLIV in the strong interaction. Existing limits on Lorentz
violation in strong interactions come from ultrahigh energy
particles of astrophysical origin, in particular limits on
the difference between the maximum attainable velocity
for quarks and gluons, which are on the order of 10−21 to
10−24 [25,26]. In general, as discussed in Ref. [23], Lorentz
violation can be only defined in the differences in the
properties of two types of particles. It is convenient therefore
to use the freedom of coordinate transformation to remove
LLIV for strong interactions. In this coordinate system,
the relationships (11) can be interpreted as providing a
constraint on the sum of Lorentz violation for nucleons
and photons.
Modern analogues of the Michelson-Morley experi-

ments [1–3] measure the anisotropy in the speed of light
relative to the length of a material cavity. Lorentz violation
due to changes in the cavity length have been considered in
Ref. [27]. Such analyses use a coordinate system where
the centers of mass of the nuclei in the material lattice are at
rest on average and have a kinetic energy on the order of the
Debye temperature, much less than 1 eV. Furthermore, the
internal motion of the nucleons inside each nucleus has no
preferential direction since the nuclei are not spin polarized
as in the 21Ne experiment [7] and the expectation value of
the Pij tensor is nearly zero [28]. This largely suppresses the
Lorentz-violating effects from the anisotropy of the kinetic
energy of protons and neutrons. Therefore, Michelson-
Morley style experiments place constraints primarily on
the combination of the electron and the photon coefficients.
To compare our limits to previous measurements of LLIV
in the photon sector it is natural therefore to assume
cpij ¼ cnij ¼ ceij ¼ 0. With these assumptions we obtain the
following:

~κXe− ¼ ~κYZe− þ ~κZYe− ¼ −ð13� 12Þ × 10−29;

~κYe− ¼ ~κXZe− þ ~κZXe− ¼ ð7� 9Þ × 10−29;

~κZe− ¼ ~κXYe− þ ~κYXe− ¼ −ð3.2� 3.7Þ × 10−29;

~κ−e− ¼ ~κXXe− − ~κYYe− ¼ −ð3.7� 4.5Þ × 10−29: ð15Þ

These limits are 7–11 orders of magnitude better than that
obtained in the previous laboratory measurements [1–5].
To summarize, in this work we performed calculations

which give a new interpretation of existing and future
experiments searching for the anisotropy in the speed of
light and the anisotropy in the maximal attainable speed
for massive particles. New interpretation of the experiment
with 21Ne [7] has already allowed us to improve the limits on
some LLIV interaction parameters for photons describing
asymmetry in the speed of light (studied in the Michelson-
Morley experiment) and anisotropy in the Coulomb inter-
action by 7 orders of magnitude.
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