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In this Letter, we establish Yangian symmetry of planar N ¼ 4 supersymmetric Yang-Mills theory. We
prove that the classical equations of motion of the model close onto themselves under the action of Yangian
generators. Moreover, we propose an off-shell extension of our statement, which is equivalent to the
invariance of the action and prove that it is exactly satisfied. We assert that our relationship serves as a
criterion for integrability in planar gauge theories by explicitly checking that it applies to the integrable
Aharony-Bergman-Jafferis-Maldacena theory but not to the nonintegrable N ¼ 1 supersymmetric Yang-
Mills theory.
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Introduction.—The assumption that planarN ¼ 4 super-
symmetric Yang-Mills (SYM) theory is integrable (see [1]
for a review) has unlocked an enormous body of data—not
only perturbatively but also at strong and intermediate
coupling—thanks to advanced methods of integrable sys-
tems. Two prime examples are the finite-coupling compu-
tations of the cusp dimension [2] by means of an integral
equation [3] and of the scaling dimension of the Konishi
operator [4] by means of the thermodynamic Bethe ansatz
[5–7]. Their smooth interpolations between weak and
strong coupling are viewed as strong confirmations of the
AdS=CFT correspondence. While the feature of integra-
bility in this model is now supported by an overwhelming
amount of evidence, it largely remains a conjecture except
for certain observables in certain corners of the parameter
space. The main obstacle in proving integrability is the lack
of a proper definition for this feature within a planar gauge
theory.
A key property of integrable systems is the existence

of a large amount of hidden symmetries. For this model,
the relevant algebra has been identified as the Yangian
Y½psuð2; 2j4Þ� [8], which is an infinite-dimensional quan-
tum algebra based on the Lie superalgebra psuð2; 2j4Þ of
superconformal symmetries. The original formulation,
however, which merely addresses the spectrum of one-
loop anomalous dimensions for which Yangian symmetry,
is largely broken due to the pertinent cyclic boundary
conditions. Sometime later, Yangian invariance has been
established for color-ordered scattering amplitudes at tree
level [9]. Unfortunately, at loop level, this symmetry is
severely affected by infrared singularities inherent to the

scattering of massless particles. Only recently, the Yangian
has been found to be a proper symmetry of the expectation
values of certain nonsingular Wilson loops [10]. However,
the Yangian has never been shown to be a symmetry of the
model itself.
The goal of the present Letter is to fill this gap and to

establish Yangian symmetry for planar N ¼ 4 SYM. The
obvious strategy would be to show that the action of the
model is invariant under the Yangian generators. However,
there are several difficulties in this approach. First, the large-
Nc limit must play a decisive role for integrability is clearly
restricted to the planar limit. However, it is not a priori
evident how to define the planar limit of the Lagrangian
or of the Yangian generators. Another difficulty lies in the
apparent incompatibility of the Yangian with the cyclicity of
the Lagrangian. Finally, one needs to define how exactly the
Yangian generators act on the fields. This turns out to be a
rather subtle issuewithin a gauge theory because symmetries
necessarily act nonlinearly in the sense that one field is
mapped to a single or to several fields. On the one hand,
nonlinearity complicates the analysis, especially in combi-
nation with the above issues. On the other hand, exact
nonlinear invariance is a very strong statement, which
typically extends to the quantum theory unless the symmetry
is anomalous. The combination of these difficulties has
arguably been a show stopper in proving Yangian symmetry
of the model in the past. Here, we start with the somewhat
more moderate goal to establish Yangian symmetry for the
classical equations of motion ofN ¼ 4 SYM.We first show
that the equations of motion close onto themselves under an
appropriately defined action of the Yangian generators. This
alone is not sufficient to establish the Yangian as a proper
symmetry of the model. We therefore propose an off-shell
extension of the statement and prove its validity. We claim
that our relationship is equivalent to Yangian invariance of
the action and thus serves as a suitable criterion for
integrability in planar gauge theories. In order to substantiate
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these claims, we consider similar superconformal gauge
theory models: on the one hand, we show that the evidently
nonintegrable N ¼ 1 SYM theory does not satisfy our
relationship. On the other hand, we prove Yangian sym-
metry of Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory [11] for which signs of integrability have been found
following the work [12].
N ¼ 4 supersymmetric Yang-Mills.—The N ¼ 4 SYM

theory in four dimensions consists of the gauge field Aμ,
four Weyl fermions Ψaα, together with their conjugates Ψ̄a

_α,
and six real scalar fields Φm. We denote spacetime vector
indices by μ; ν;… ¼ 0;…; 3 and spinor indices of the two
chiralities by α; β;… ¼ 1, 2 and _α; _β;… ¼ 1, 2, respec-
tively. Moreover, m; n;… ¼ 1;…; 6 and a; b;… ¼ 1, 2, 3,
4 denote indices for the vector and spinor representations of
SO(6), respectively.Allmatter fields transform in the adjoint
representation of the gauge group. The covariant derivative
of a generic covariant field Z isDμZ ≔ ∂μZ − i½Aμ; Z�, and
the field strength equals Fμν ≔ ∂μAν − ∂νAμ − i½Aμ; Aν�.
The Lagrangian of the theory takes the form

L ¼ −
1

4
trFμνFμν þ triΨ̄a

_ασ
α _α
μ DμΨaα

−
i
2
trðΨaασ

ab
m ϵαβ½Φm;Ψbβ� − Ψ̄a

_ασ
m
abϵ

_α _β½Φm; Ψ̄b
_β
�Þ

−
1

2
trDμΦmDμΦm þ 1

4
tr½Φm;Φn�½Φm;Φn�: ð1Þ

Here, σμα _α and σmab denote the generalizations of the Pauli
matrices to ð3þ 1ÞD and to 6D, respectively. Furthermore,

ϵαβ, ϵ _α _β, and ϵabcd denote the totally antisymmetric tensors.
As already alluded to in the introduction, we are mainly
going to work with the equations of motion of the theory.
To that end, we introduce a short-hand notation for the
variation of the action with respect to a generic field ZA (the
indices A;B;… enumerate the various fields) Z̆A ≔
δS=δZA so that the equations of motion simply read
Z̆A ¼ 0. We have explicitly that

˘̄Ψ _α
a ¼ iσα _αμ DμΨaα þ iϵ _α _γσmab½Φm; Ψ̄b

_γ �;
Ψ̆aα ¼ iσ _αα

μ DμΨ̄a
_α þ iϵαβσabm ½Φm;Ψβb�;

Φ̆m ¼ DμDμΦm þ ½Φn; ½Φn;Φm�� þ
i
2
σabm ϵαβfΨaα;Ψbβg

þ i
2
σm;abϵ

_α _γfΨ̄a
_α; Ψ̄

b
_γg;

Ăμ ¼ DνFνμ þ i½Φn; DμΦn� þ σ _αα
μ fΨ̄a

_α;Ψaαg: ð2Þ

N ¼ 4 SYM theory is a superconformal theory; its
action is invariant under the four-dimensional extended
superconformal algebra psuð2; 2j4Þ, and quantum effects
do not spoil such invariance. In the following, we will need
the action of the generators of dilatationsD, translationsPμ,
and Lorentz transformation Mμν on a generic field Z,

DZ ¼ iðxσDσ þ ΔZÞZ;
PρZ ¼ iDρZ;

LμνZ ¼ iðxμDν − xνDμ þ ΣμνÞZ: ð3Þ

In the above equations, ΔZ is the conformal dimension of
the field Z, and Σμν is a spin-specific part of the trans-
formation. To make transformations consistent for the
noncovariant gauge field Aμ, we have to make the peculiar
definitions, ΔA ≔ 0 and DμAν ≔ Fμν. Supersymmetry
generators Qa

α act as

Qa
αΦm ¼ σabm Ψbα;

Qa
αΨbβ ¼ −

1

2
σμβ_ϵϵ

_ϵ _γσνα_γFμνδ
a
b þ

i
2
ϵβασ

m
bcσ

ca
n ½Φm;Φn�;

Qa
αΨ̄b

_γ ¼ iσabm σμα_γDμΦm;

Qa
αAμ ¼ iσμα_γϵ

_γ _ϵΨ̄a
_ϵ : ð4Þ

Analogous expressions hold for the conjugate generator
Q̄a _α, with the roles of Ψaα and Ψ̄a

_α interchanged.
Yangian invariance of N ¼ 4 SYM.—We want to study

classical Yangian symmetry of planar N ¼ 4 SYM; ordi-
narily, one would show the invariance of the action S. This
works well for the superconformal generators JK at level
zero of the Yangian [the indices K;L;… enumerate a basis
of the level-zero algebra psuð2; 2j4Þ], namely JKS ¼ 0. As
outlined in the introduction, there are several difficulties in
formulating invariance of the action to higher-level gen-
erators. Gladly, most of them disappear when acting on the
equations of motion instead. In the following, we will show
how this can be achieved and how to promote their
invariance to a powerful off-shell statement.
A level-one generator ĴK has a bilocal contribution

determined completely by the level-zero generators

ĴKbiloc ¼
1

2
fKMNJ

M ∧ JN ; ð5Þ
here, fKMN denotes the structure constants of psuð2; 2j4Þ.
Explicitly, the bilocal term acts in the following way on a
sequence Z1Z2…Zn of fields:

fKMN

Xn
1¼i<j

Z1…ðJMZiÞ…ðJNZjÞ…Zn: ð6Þ

Notice that this is where the planar limit is relevant for
Yangian symmetry: only in the planar limit, the ordering of
fields within a matrix product is universally and unambig-
uously defined because there are no identities between
matrix polynomials when Nc is sufficiently large.
Let us apply the simplest level-one generator P̂ρ, also

known as the dual superconformal generator [9], to the
equations of motion (2). We will work with the easiest of
them, the Dirac equation. The bilocal part of the level-one
momentum P̂ρ takes the form

P̂ρ
biloc ¼ D ∧ Pρ − Lρ

μ ∧ Pμ −
i
4
σρ; _αβQ̄a _α ∧ Qa

β: ð7Þ
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Applying it to the Dirac equation, we get

P̂μ
biloc

˘̄Ψ _α
a ¼ −iϵ _α _γσmabfΦm;DμΨ̄b

_γg −
i
2
ϵ _α _γσmabfDμΦm; Ψ̄b

_γg

−
i
2
ϵ _α _γσmabσ

μ
α_γσ

α_ϵ
ν fDνΦm; Ψ̄b

_ϵg

−
i
2
σμ;ρ _ασmacσ

cb
n fΨρb; ½Φm;Φn�g: ð8Þ

It is useful to observe that the explicit x dependence due to
some of the bosonic generators in (3) drops out completely.
This is related to the triviality of ½Pμ; P̂ρ�.
A level-one generator can also have some local con-

tributions, which act on a single field at a time just like the
level-zero generators. These contributions are not deter-
mined by level-zero symmetry, and we may adjust them
according to our needs. We now ask whether there is a
single-field action of P̂ρ, ensuring the invariance of the
equations of motion. With the following choice for the
single-field action of P̂μ,

P̂μΦm ¼ 0;

P̂μΨaα ¼
1

2
σμα_γϵ

_γ _ϵσmabfΦm; Ψ̄b
_ϵg;

P̂μΨ̄a
_α ¼

1

2
σμβ _αϵ

βγσabm fΦm;Ψγbg;

P̂μAρ ¼ i
2
ημρfΦm;Φmg; ð9Þ

the combination of local and bilocal terms in the action
of P̂ gives

P̂μ ˘̄Ψ _α
a ¼ −

1

2
σμα_γσ

m
baϵ

_γ _αfΦm; Ψ̆αbg: ð10Þ

The rhs. is proportional to Ψ̆ and vanishes on shell. Hence,
P̂ρ is an on-shell symmetry of the N ¼ 4 SYM Dirac
equation.
The invariance of the action S under a superconformal

generator JK implies a stronger, off-shell relationship for
the equations of motion. To that end, consider the invari-
ance of the action, JKS ¼ Z̆AðJKZAÞ ¼ 0. Now, vary this
equation with respect to a generic field ZC to obtain an
equivalent relation, which holds off-shell

JKZ̆C ¼ −Z̆A δðJKZAÞ
δZC

: ð11Þ

The r.h.s. is now a specific combination of the equations
of motion Z̆A, given by the action of the generators JK on
the fields ZA of the theory. Getting inspiration from the
structure of the bilocal term (5), as well as from the level-
zero formula (11), we propose an analogous formula for the
level-one Yangian generators ĴK ,

ĴKZ̆C ¼ −Z̆A δðĴKZAÞ
δZC

þ fKMNZ̆
A

�
JM ∧ δ

δZC

�
ðJNZAÞ:

ð12Þ

Let us explicitly demonstrate how the two terms on the r.h.s.
are to be understood. The former is the direct counterpart of
the r.h.s. of (11). Assuming that, e.g., ĴKZA ¼ Z1Z2, it
evaluates to

−½δC1 Z̆AZ2 þ δC2Z1Z̆
A�: ð13Þ

Concerning the second term, we first observe that it vanishes
for the linear contribution of JN acting onZA. Assuming that
JNZA ¼ Z1Z2, it evaluates to

þfKMN ½δC2 ðJMZ1ÞZ̆A − δC1 Z̆
AðJMZ2Þ�: ð14Þ

It is now a straightforward exercise to verify that the
formula (12) indeed reproduces (10) correctly. Similar
checks can also be made for all the other equations of
motion. As the supersymmetry generators Qa

α and Q̄a _α map
the Dirac equation to the remaining equations of motion,
already the algebraic relations guarantee their invariance
under P̂ρ. Most importantly, they also imply invariance
under the remaining infinitely many Yangian generators.
We conclude that the relationship (12) holds in classical

planar N ¼ 4 SYM theory. Furthermore, we will demon-
strate in [13], that it can be lifted to an invariance statement
for the action ofN ¼ 4 SYM. In that sense, classical planar
N ¼ 4 SYM is invariant under Yangian symmetry.
Correlation functions.—The novel symmetry relationship

(12) should have implications for observables. A fundamen-
tal class of observables in a quantum field theory is given by
correlators of fields. Although not gauge invariant on their
own, they are building blocks for observables like Wilson
loops, scattering amplitudes (via the Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula), correlators of local
operators, or form factors. An ordinary symmetry results in
Ward-Takahashi identities for correlators. The goal is thus to
derive Ward-Takahashi identities for level-one Yangian
symmetries, and subsequently use them to prove symmetries
of the aforementioned gauge-invariant observables. In the
following, we shall briefly sketch the level-one symmetry for
planar correlators of the fields; a detailed treatment can be
found in the follow-up paper [13].
In order to set up the quantum theory, we should first fix

the gauge and thus make correlation functions of the fields
well-defined observables. This step can potentially break
symmetries, but gladly, it leaves the level-one Yangian
symmetry intact: we show in [13] that there exists a (trivial)
extension of the symmetry representation on the Faddeev-
Popov ghosts such that the invariance statement (12) con-
tinues to hold. Note that it must be supplemented by suitable
terms exact under Becchi-Rouet-Stora-Tyutin (BRST) sym-
metry, which are irrelevant for physical observables.
Ward-Takahashi identities for Yangian symmetry are

obtained by acting with the nonlinear level-one momentum
P̂ on some collection of fields. Symmetry implies that the
planar quantum expectation value of the resulting expres-
sion vanishes. This amounts to some extra differential
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constraints on planar correlation functions. Note, however,
the following few caveats: in a gauge-fixed theory, one
should expect some residual terms due to the unphysical
modes which may violate the symmetry. At leading order,
these should take the form of total derivatives of the external
fields. Furthermore, the resulting identity can receive
divergences at loop level. If the level-one symmetry can
be renormalized appropriately to make the identity hold at
higher orders in perturbation theory, it is a proper quantum
symmetry. Otherwise, the level-one Yangian symmetry
would be anomalous.
In [13], we demonstrate that (discarding issues related to

gauge fixing) the level-one relationship (12), combined
with superconformal symmetry, results in additional Ward-
Takahashi identities at tree level at least up to four external
points. Therefore, Yangian symmetry indeed has concrete
implications for planar correlators.
Other superconformal theories.—It is tempting to con-

sider the relationship of Eq. (12) as a criterion for
integrability in other planar gauge theories. The criterion
can be applied to all models whose global symmetries form
a semisimple Lie (super)algebra. In the following, we
support our proposal by showing that the criterion agrees
with our expectations for two sample gauge theories with
classical superconformal symmetry.
First, we consider N ¼ 1 pure SYM theory in four

dimensions, which is nonintegrable. This theory is classi-
cally superconformal, its global symmetry algebra being
suð2; 2j1Þ; it contains a single vector field and a single
Weyl fermion. The Lagrangian of this theory can be
obtained from N ¼ 4 SYM by dropping all the scalar
fields and retaining one single Weyl fermion; it reads

L ¼ −
1

4
trFμνFμν þ triΨ̄ _ασ

_αβ
μ DμΨβ: ð15Þ

Similarly, the action of the superconformal generators can
be obtained from the corresponding expressions forN ¼ 4
SYM, [Eqs. (3) and (4)].
As before, we can check our criterion for Yangian

symmetry using the level-one generator P̂ρ of
Y½suð2; 2j1Þ�, acting on the Dirac equation of this theory.
Considering the quantum numbers, one finds no admissible
terms for the single-field action of P̂ρ,

P̂ρAμ ¼ P̂ρΨα ¼ P̂ρΨ̄ _β ¼ 0: ð16Þ

The computation of the lhs. of Eq. (12) in this case yields a
term proportional to fΨ̄ _α; Fμνg, whereas the r.h.s. vanishes
identically; in N ¼ 4 SYM, the latter is nontrivial and
cancels the former as well as all other arising terms. Our
criterion therefore states thatN ¼ 1 SYM does not possess
Yangian symmetry in accordance with the fact that this
theory, as a whole, is not integrable. Importantly, this
demonstrates that it is not merely an artefact due to other
properties, such as gauge or superconformal symmetry.

The second example we study is the so-called ABJM
theory, a Chern-Simons matter theory with gauge group,
UðNcÞ × UðNcÞ. The matter sector consists of four chiral
multiplets Φa, Ψaα, transforming in the bifundamental of
the gauge groups, together with their conjugate multiplets
Φ̄a, Ψ̄a

α, transforming in the conjugate bifundamental; the
gauge fields associated with the two components of the
gauge group are Aμ and ~Aμ. ABJM is a superconformal
theory with N ¼ 6 supersymmetry, its global symmetry
algebra being ospð6j4Þ. Similarly to N ¼ 4 SYM, this
theory appears to be exactly integrable in the planar limit,
and also in this case, its integrability is encoded in the
existence of a Yangian symmetry [14] based on its super-
conformal algebra.
In order to study the Yangian symmetry of planar ABJM,

we start from the Lagrangian,

L¼LCS−L ~CSþ Ψ̄aαDμγ
μ
αβΨ

β
aþDμΦaDμΦ̄aþ…: ð17Þ

Here, LCS and L ~CS are the Chern-Simons terms, and we
omitted the Yukawa couplings and scalar potential.
We want to check whether Eq. (12) holds for the Dirac

equation of ABJM,

˘̄Ψaα¼−γμαγϵγβDμΨaβþΨaαΦ̄bΦb−ΦbΦ̄bΨaα

þ2ΦbΦ̄aΨbα−2ΨbαΦ̄aΦbþ2ϵabcdΦbΨ̄c
αΦd: ð18Þ

As before, we consider the level-one generator P̂ρ of
Y½ospð6j4Þ�, whose bilocal part is of the same form
described in Eq. (7),

P̂ρ
biloc¼D∧Pρ−Lρ

μ∧Pμþ 1

16
ϵabcdγρ;αβQabα∧Qcdβ: ð19Þ

In order to compute the action of P̂ρ on ˘̄Ψaα, we need the
action of the supercharges on the fields

QabαΦc ¼ δcaΨbα − δcbΨaα;

QabαΨcβ ¼ −ϵabcdγ
μ
αβDμΦd − 2ϵαβϵabdeΦdΦ̄cΦe

− ϵαβϵabcdðΦdΦ̄eΦe −ΦeΦ̄eΦdÞ;
QabαAμ ¼ 2γμαβϵ

βγðΨbγΦ̄a − ΨaγΦ̄b þ ϵabcdΦcΨ̄d
γ Þ; ð20Þ

and similarly for Φ̄a, Ψ̄a
α, and ~Aμ. We can now show that

Eq. (12) holds for P̂ρ acting on ˘̄Ψaα, provided that the
single-field action of P̂ρ is

P̂ρΦa ¼ 0;

P̂ρΨaα ¼ γραβϵ
βγ½ΨaγΦ̄bΦb þΦbΦ̄bΨaγ

− 2ΨbγΦ̄aΦb − 2ΦbΦ̄aΨbγ�;

P̂ρAμ ¼ 1

2
ϵρμνðDνΦaΦ̄a þΦaDνΦ̄aÞ

þ 2ημρðΦaΦ̄bΦbΦ̄a − ϵαβΨaαΨ̄a
βÞ; ð21Þ
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and similarly for Φ̄a, Ψ̄a
γ , and ~Aμ. It is similarly possible to

show that the off-shell invariance condition in Eq. (12) holds
for all the equations of motion of ABJM, and that therefore
planar ABJM is classically Yangian invariant. However, the
compatibility with gauge fixing, cf. the comments in
the previous section, is subtler than for N ¼ 4 SYM. At
themoment, we do not understand how to compensate terms
due to the nonlinear action in Eq. (20) of the supercharges on
the gauge fields. We will return to this issue in [13].
Comments and conclusions.—conclusions In this Letter,

we showed that the equations of motion of both N ¼ 4
supersymmetric Yang-Mills and ABJM—two superconfor-
mal field theories which are apparently integrable in the
planar limit—are invariant under the Yangian of the
relevant superconformal algebra. Moreover, we derived
an off-shell relationship (12), which serves as a formal
statement of invariance of the classical theory. It can
therefore be seen as a criterion for integrability in planar
gauge theories.
In a companion paper [13], we will provide a more

detailed account of our claims and elaborate on some more
advanced aspects, which we can merely touch upon in the
present Letter: starting from (12), we will derive a defi-
nition for Yangian invariance of the action of a planar gauge
theory. Furthermore, we will show how Yangian symmetry
survives gauge fixing. Finally, we will establish novel
Ward-Takahashi identities for planar correlators of fields.
An important next goal is to analyze the validity of

Yangian symmetry at the quantum level. In other words, do
the Ward-Takahashi identities continue to hold, at least at
the level of loop integrands? And does renormalization and
performing the loop integrations render the symmetry
anomalous? Our strong expectation is that the symmetry
will hold exactly at all values of the coupling constant
because we know that integrability leads to consistent
results at weak, intermediate, and strong coupling, see
[1–7]. Note that, likewise, the AdS=CFT dual string theory
model is integrable [15]. However, it is to be expected that
particular observables, e.g., Wilson loops with cusps, will
break Yangian symmetry to some extent. Therefore, it will
be most important to apply our definition of Yangian

symmetry to observables and to understand where and
how it is broken concretely.
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