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In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential
equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of
the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method
can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple
polylogarithms to an ε form.
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Introduction.—Precision physics with heavy particles,
like the Higgs boson, the top quark, or theW and Z bosons,
plays an important part in the current physics program at the
LHC andwill become evenmore important in the upcoming
high luminosity runs. Precision physics requires that higher
orders in perturbation theory are taken into account. There is
a class of mostly massless processes, where the virtual
corrections can be expressed in terms of multiple poly-
logarithms. Loop integrals can be tackled with differential
equations [1–8]. We denote by ε the parameter of dimen-
sional regularization. If the differential equations can be
transformed to an ε form [7,8], the solution in terms of
multiple polylogarithms is straightforward. However, start-
ing at two loops, there are integrals which cannot be
expressed in terms of multiple polylogarithms. The simplest
example is given by the two-loop sunrise integral with
internal masses [9–21], where functions related to elliptic
curves occur. In the corresponding system of differential
equations one faces the situation, that at order ε0 a system of
two coupled differential equations occur, which cannot be
transformed away.
If we now look at realistic scattering processes at next-to-

next-to-leading order (NNLO) with massive particles it is
not unusual that within one topology we have several
master integrals, coupled together at order ε0 by the
differential equations. We denote by N the number of
master integrals within a given topology. For example, for
2 → 2 processes at NNLO topologies with up to 5 master
integrals may occur. It would be highly prohibitive, if we
had to solve at order ε0 a coupled system of N differential
equations. There are indications that topologies with three
or more master integrals can be decoupled into blocks of
size 2 × 2 at worst [16,22–25]. This raises the question, if
there is a systematic method which transforms a system
into an equivalent system, where at order ε0 are the
differential equations split into smaller blocks? In this
Letter we will give an algorithm for this task.
The basic idea is as follows: We first reduce a multiscale

problem to a single-scale problem with scale λ. In a second

stepwe pick amaster integral I and determine at order ε0 and
modulo subtopologies the maximal number of independent
derivatives I, ðd=dλÞI;…; ðd=dλÞr−1I. This defines a
Picard-Fuchs operator of order r. For r < N the system
decouples into a system of r master integrals and (N − r)
master integrals. Let us look at the sector with r master
integrals. In a third step we factorize the Picard-Fuchs
operator. This will decouple the system into blocks of the
size of the order of the irreducible factors of the Picard-Fuchs
operator. In a fourth step we reconstruct the multivariable
transformation matrix from the single-variable one.
Although our primary interest is integrals involving

elliptic sectors, it should be noted that our approach
provides as a side product an algorithm to convert a
multiscale system, which has a solution in terms of multiple
polylogarithms to an ε form. In this respect, it complements
other methods [26–33].
The method.—Let us consider a set of master integrals

I1;…; IN depending on kinematic variables x1;…; xn. We
denote the ordered set of master integrals by the vector
~I ¼ ðI1;…; INÞ. If the master integrals depend only on a
single kinematic variable x1, we have a single-scale
problem. For two or more kinematic variables (n ≥ 2)
we have a multiscale problem. We consider the master
integrals inD ¼ 2m − 2ε space-time dimensions, withm ∈
Z and ε being the dimensional regularization parameter.
Integration-by-parts identities [34,35] allow us to derive a
system of differential equations of Fuchsian type

d~I ¼ A~I; ð1Þ
where A is a matrix-valued one-form

A ¼
Xn
i¼1

Aidxi: ð2Þ

The matrix-valued one-form A satisfies the integrability
condition

dA − A∧A ¼ 0: ð3Þ
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We assume that A has an ε expansion

A ¼
X
j≥0

εjAðjÞ ¼
Xn
i¼1

X
j≥0

εjAðjÞ
i dxi: ð4Þ

The differential equations are usually solved order by order
in ε. A crucial role for solving the system is played by the
first term Að0Þ. The higher terms AðjÞ (with j ≥ 1) only give
additional integrations over expressions of lower order. We
therefore seek transformations, which simplify Að0Þ. Under
a change of basis

~J ¼ U~I; ð5Þ
one obtains

d~J ¼ ~A ~J; ð6Þ

where the matrix ~A is related to A by

~A ¼ UAU−1 −UdU−1: ð7Þ
The master integrals can be expressed in terms of multiple
polylogarithms if there is a transformation U such that
~Að0Þ ¼ 0.
The matrix A has a natural lower block triangular form,

which derives from the top topology and its subtopologies,
obtained by pinching of propagators. In the following we
consider the top topology and we work modulo subtopol-
ogies. The inclusion of subtopologies leads only to inte-
grations over already determined terms. Let us assume
that the top topology has N master integrals. We are in
particular interested in the case where no transformation U
exists, such that ~Að0Þ ¼ 0. Although it might seem at first
sight that we face in this situation, at order ε0, a coupled
system of N differential equations, it is very often the case
that the system decouples into blocks of smaller size. In this
Letter we give a systematic method to decouple the system.
We first reduce the multiscale problem to a single-

scale problem. Let α ¼ ½α1∶…∶αn� ∈ CPn−1 be a point
in projective space. Without loss of generality we work in
the chart αn ¼ 1. Following Ref. [24], we consider a path
γα∶½0; 1� → Cn, indexed by α and parametrized by a
variable λ. Explicitly, we have

xiðλÞ ¼ αiλ; 1 ≤ i ≤ n: ð8Þ
We then view the master integrals as functions of λ. In other
words, we look at the variation of the master integrals in the
direction specified by α. For the derivative with respect to λ
we have

d
dλ

~I ¼ B~I; B ¼
Xn
i¼1

αiAi: ð9Þ

The matrix B has again a Taylor expansion in ε:

B ¼ Bð0Þ þ
X
j>0

εjBðjÞ: ð10Þ

Let I be one of the master integrals fI1;…; INg.
Equation (9) allows us to express the kth derivative
of I with respect to λ as a linear combination of the
original master integrals. We recall that we work modulo
subtopologies. We may even work modulo ε corrections
by using Bð0Þ instead of the full matrix B. We then
determine the largest number r, such that the matrix
which expresses I, ðd=dλÞI;…; ðd=dλÞr−1I, in terms of
the original set fI1;…; INg has full rank. Obviously,
we have r ≤ N. In the case r < N we complement the
set I; ðd=dλÞI;…; ðd=dλÞr−1I by (N − r) elements
Iσrþ1

;…; IσN ∈ fI1;…; INg such that the transformation
matrix has rank N. The elements Iσrþ1

;…; IσN must exist,
since we assumed that the set fI1;…; INg forms a basis
of master integrals for this topology. The basis
fI; ðd=dλÞI;…; ðd=dλÞr−1I; Iσrþ1

;…; IσNg decouples the
system into a block of size r, which is closed under
differentiation at order ε0 modulo subtopologies and a
remaining sector of size (N − r).
Let us now investigate under which conditions the block

of size r can be decomposed further. We recall that r is the
largest number such that I; ðd=dλÞI;…; ðd=dλÞr−1I are
independent. It follows that ðd=dλÞrI can be written as a
linear combination of I; ðd=dλÞI;…; ðd=dλÞr−1I. This
defines the Picard-Fuchs operator Lr for the master integral
I with respect to λ:

LrI ¼ 0; Lr ¼
Xr
k¼0

Rk
dk

dλk
; ð11Þ

where the coefficients Rk are rational functions in λ and we
use the normalization Rr ¼ 1. Note that the zero on the
right-hand side of Eq. (11) is understood modulo sub-
topologies and modulo terms of order ε. Using always Bð0Þ
instead of B ensures that Lr is independent of ε. The Picard-
Fuchs operator is easily obtained by a transformation to the
basis I; ðd=dλÞI;…; ðd=dλÞr−1I. In this basis the r × r
matrix ~B has the form

0
BBB@

0 1 … 0 0

…

0 0 … 0 1

−R0 −R1 … −Rr−2 −Rr−1

1
CCCA: ð12Þ

It is very often the case that the operator Lr factorizes [6]:

Lr ¼ L1;r1L2;r2 ;…; Ls;rs ; ð13Þ

where Li;ri denotes a differential operator of order ri.
Clearly, we have r1 þ � � � þ rs ¼ r. The factorization in
Eq. (13) can be obtained with the help of standard computer
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algebra systems. For example, MAPLE offers the command
“DFactor.” The factorization in Eq. (13) can be used to
convert the system of differential equations at order ε0 into
a block triangular form with blocks of size r1; r2;…; rs. A
basis for block i is given by

Ji;j ¼
dj−1

dλj−1
Liþ1;riþ1

;…; Ls;rsI; 1 ≤ j ≤ ri: ð14Þ

Let us denote ~J ¼ ðJ1;1;…; J1;r1 ; J2;1;…; Js;rsÞ. Expressing
the elements of ~J in terms of the original integrals ~I defines
a transformation matrix

~J ¼ V~I: ð15Þ
V is a function of the parameters α and of λ:

V ¼ Vðα1;…; αn−1; λÞ: ð16Þ
We recall that we work in the chart αn ¼ 1. Setting

U ¼ V

�
x1
xn

;…;
xn−1
xn

; xn

�
ð17Þ

gives the transformation in terms of the original variables
x1;…; xn. Let us mention that there might be terms in the
original A, which map to zero in B for the class of paths
considered in Eq. (8). These terms are derivatives of
functions being constant on lines through the origin. An
example is given by

d lnZðx1;…; xnÞ; ð18Þ
where Zðx1;…; xnÞ is a rational function in ðx1;…; xnÞ and
homogeneous of degree zero in ðx1;…; xnÞ. On the one
hand, these terms don’t contribute if we integrate the
differential equation along the paths of Eq. (8). On the
other hand, these terms are in many cases easily removed
by a subsequent transformation.
The case of linear factors.—Let us consider the special

case, where the Picard-Fuchs operator Lr factorizes com-
pletely into linear factors:

Lr ¼ L1;1L2;1;…; Lr;1; ð19Þ
with

Li;1 ¼
d
dλ

þ Ri;0: ð20Þ

Ri;0 is a rational function in λ. Then it is possible to

construct a transformation such that ~Að0Þ ¼ 0. We first set

Ji;1 ¼ exp

�Z
λ
d~λRi;0

�
Liþ1;1;…; Lr;1I: ð21Þ

This transforms the system to a form

d
dλ

~J ¼ ~B ~J; ð22Þ

where the ε0-term ~Bð0Þ is lower triangular with zeros on the
diagonal. The possible nonzero entries in the lower triangle
of ~Bð0Þ are easily removed. It is sufficient to discuss the case
of a 2 × 2 matrix: For

~Bð0Þ ¼
�

0 0

N 0

�
ð23Þ

the transformation

~Vð0Þ ¼
�
1 0

f 1

�
ð24Þ

with

f ¼ −
Z

λ
d~λN ð25Þ

removes the term in the lower left corner. The functionN has
a partial fraction decomposition in λ and we use this
technique to remove all terms which are polynomials in λ
or poles of order 2 and higher. Single poles integrate to
logarithms and indicate that our basis elements have non-
uniform weight. These are removed by rescaling the master
integrals by ε-dependent prefactors, such that the master
integrals have uniformweight. In summary, this gives an easy
method to convert a system, where every Picard-Fuchs
operator factorizes into linear factors, into ε form.
Examples.—Let us now look at a few examples. As a first

example we consider a two-loop four-point integral with six
propagators, shown in Fig. 1. Internal solid lines correspond
to a mass m, dashed lines to mass zero. The external
momenta are on-shell, p2

1¼p2
2¼0 and p2

3¼p2
4¼m2. The

Mandelstam variables are defined by s ¼ ðp1 þ p2Þ2 and
t ¼ ðp2 þ p3Þ2. The integral depends on two dimensionless
variables x1 and x2, which we may choose as [36–39]

s ¼ −m2
ð1 − x1Þ2

x1
; t ¼ −m2x2: ð26Þ

The internal propagators are labeled by numbers as shown
in Fig. 1. We denote by Iν1ν2ν3ν4ν5ν6ν7 the scalar integral,
where propagator j occurs to the power νj. The seven indices
refer to a double-box integral with seven propagators. We
use the convention that a scalar propagator is given by
1=ð−q2j þm2

jÞ. We use the program “Reduze” [40,41] to
obtain an initial set of master integrals together with the
corresponding system of differential equations. The integral

FIG. 1. A two-loop four-point integral with six propagators.
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in Fig. 1 has an elliptic subtopology, obtained by pinching
propagators 2, 5, and6. The topology inFig. 1 has twomaster
integrals, which we may take as

~I ¼ ½ð1þ 2εÞI1101111; I1101211�: ð27Þ

The prefactor ð1þ 2εÞ in front of the first master integrals
ensures that onlyAð0Þ andAð1Þ appear in the ε expansion ofA.
The Picard-Fuchs operator for I ¼ ð1þ 2εÞI1101111 is of
order 2 and factorizes into linear factors:

L2 ¼
�
d
dλ

þ 1

λþ 1
þ 2α1
α1λ − 1

þ 2α1λ

α1λ
2 þ 1

−
2α1λ

α1λ
2 − 1

�

×

�
d
dλ

−
1

λ
þ 1

λþ 1
þ 2α1
α1λ − 1

�
: ð28Þ

We may therefore transform to a basis, where ~Bð0Þ is lower
triangular with zeros on the diagonal. The entry on the lower
left corner of ~Bð0Þ has only single poles and is removed by
rescaling the first master integral with ð1þ 2εÞ and the
second master integral by ε. This converts the system with
respect to the variable λ to ε form. Going back to the original
variables we find

~A ¼
�
1 0

0 1

�
d ln

�
x1
x2

�
þ ε ~Að1Þ: ð29Þ

The ε0 term is easily removed by multiplying both master
integrals by x2=x1. In summary we find that with

U ¼
0
@ U11 − ð1þ2εÞðx1−1Þ3ðx2þ1Þ2

2x1ðx1þ1Þ
εðx2þ1Þðx1−1Þ2

x1
0

1
A;

U11 ¼
ð1þ 2εÞðx1 − 1Þðx22x1 þ x2x21 þ x2 − x21 þ 3x1 − 1Þ

2x1ðx1 þ 1Þ
ð30Þ

the transformed system is given by

~A ¼ ε

��
2 0

0 0

�
d ln ðx1 þ 1Þ −

�
2 0

0 2

�
d ln ðx1 − 1Þ

−
�
0 0

0 2

�
d ln ðx2 þ 1Þ þ

�
0 0

−1 1

�
d ln ðx1 þ x2Þ

þ
�
0 0

1 1

�
d ln ðx1x2 þ 1Þ

�
: ð31Þ

We see that this topology can be transformed to ε form and
does not introduce new elliptic integrations.
Let us now look at a more involved example. We

consider the two-loop four-point integral with five propa-
gators shown in Fig. 2. The kinematics is as in our first

example. This topology has five master integrals. As our
initial basis we take

~I ¼ ðεI1011101; I2011101; I1021101; I1012101; I1011201Þ: ð32Þ

Multiplying the first master integral by ε ensures that only
Að0Þ and Að1Þ appear in the ε expansion of A. For the
specific system under consideration this also decouples
the first master integral I1 ¼ εI1011101 at order ε0 from the
remaining ones. We therefore have to consider only a 4 × 4
system. Let us pick I2 ¼ I2011101. Working modulo ε terms,
we find that already the third derivative of I2 can be
expressed as a linear combination of the lower ones.
Adding I5 ¼ I1011201 to I2; ðd=dλÞI2; ðd=dλÞ2I2 will give
a transformation matrix of full rank. This decouples I5 from
the 3 × 3 system formed by I2; ðd=dλÞI2; ðd=dλÞ2I2. The
Picard-Fuchs operator for I2 is therefore of order 3. It
factorizes into a second-order operator and a first-order
operator:

L3 ¼ L2L1: ð33Þ

This decouples the 3 × 3 system into a 2 × 2 system and a
1 × 1 system. The 2 × 2 system is irreducible. When lifting
the result from the single-scale case to the multiscale case
with the variables fx1; x2g, we again perform an additional
transformation, which removes d lnðx1=x2Þ terms. In sum-
mary, we are able to decompose the five master integrals for
this topology at order ε0 in blocks of size

1; 2; 1; 1: ð34Þ

The explicit expressions are longer; however, we may
display the structure of ~A. We have

~A ¼

0
BBBBBB@

0 0 0 0 0

0 � � 0 0

0 � � 0 0

0 � � 0 0

0 � � 0 0

1
CCCCCCA

þ ε ~Að1Þ; ð35Þ

where � indicates a nonzero entry. In this example we see
that Að0Þ cannot be transformed to zero. We find an

FIG. 2. A two-loop four-point integral with five propagators.
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irreducible 2 × 2 system at order ε0. However, we achieved
a simplification of the original 5 × 5 system to smaller
blocks.
In addition we have applied our method successfully to

all sectors of the seven-propagator double-box integral,
including the top sector with seven propagators. This sector
has five master integrals and decouples into blocks of size
1, 2, 1, and 1.
Conclusions.—In this Letter we presented an algorithm

to simplify differential equations for multiscale Feynman
integrals. We first reduced the problem to a single-scale
problem and then exploited factorization properties of
the Picard-Fuchs operator. This allows us to decouple
the system at order ε0 into blocks of the sizes of the
irreducible factors of the Picard-Fuchs operator. We expect
this technique to be useful for precision calculations. A
particular special case is given when all Picard-Fuchs
operators factorize into linear factors. In this case, our
method provides an easy algorithm to convert a multiscale
differential system into ε form.

L. A. and E. C. are grateful for financial support from the
Research Training Group GRK 1581.
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