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Starting from the classical action for a spin-zero particle in a D-dimensional anti–de Sitter (AdS)
spacetime, we recover the Breitenlohner-Freedman bound by quantization. For D ¼ 4, 5, 7 and using an
Slð2;KÞ spinor notation forK ¼ R;C;H, we find a bitwistor form of the action for which the AdS isometry
group is linearly realized, although only for zero mass when D ¼ 4, 7 in agreement with previous
constructions. For zero mass andD ¼ 4 the conformal isometry group is linearly realized. We extend these
results to the superparticle in the maximally supersymmetric “AdS × S” string orM-theory vacua, showing
that quantization yields a 128þ 128 component supermultiplet. We also extend them to the null string.
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Actions governing the dynamics of particles, strings, or
branes are generally invariant under the isometries, and
possibly conformal isometries, of the background space-
time, but these symmetries may be realized nonlinearly. In
some cases it is possible to make manifest the full
symmetry group by reexpressing the action in terms of
new variables that transform linearly with respect to it.
A well-known example [1] is the twistor formalism for

massless particles in four-dimensional Minkowski space-
time (Mink4); this makes manifest an invariance under the
Spinð2; 4Þ ≅ SUð2; 2Þ conformal isometry group of Mink4
because a twistor is essentially a spinor of this group. The
supertwistor [2] extension of this construction to theN ¼ 4

massless superparticle makes manifest the SUð2; 2j4Þ
superconformal symmetry of its action [3], allowing a
simple demonstration that its quantization yields theN ¼ 4

Maxwell supermultiplet. Similar constructions are possible
for Mink3;6 [4]; these rely on the fact that the conformal
isometry group of Minkd for d ¼ 2þ dimK, where
K ¼ R;C;H, is isomorphic to Spð4;KÞ, defined as pre-
serving a skew-K-Hermitian quadratic form on K4 [5].
The conformal isometry group of Minkd is also the

isometry group of D-dimensional anti–de Sitter space
(AdSD) for D ¼ dþ 1. Some years ago it was noticed
by Claus et al. [6] that the action for a particle in AdS5
could be expressed in terms of bitwistors of Mink4. A
geometric interpretation of this construction was supplied
by Cederwall [7], who also showed that a similar bitwistor
construction for AdS4;7 could work only for zero mass.
Here we present a simple variant of the Claus et al.

construction that applies uniformly to AdS4;5;7. Although
the resulting linearly realized Spð4;KÞ symmetry group is
the AdS isometry group only for zero mass, this mismatch
can be eliminated in theK ¼ C case by a redefinition of the
twistor variables. We thereby recover the result of Claus
et al. for AdS5, and confirm the conclusions of Cederwall
for AdS4;7 by algebraic means.

Although linear realization of the AdSD isometry group
limits our bitwistor construction for D ¼ 4, 7 to zero mass,
a bonus for D ¼ 4 is that the conformal isometry group of
AdS4 is also linearly realized.
Anti–de Sitter vacua arise naturally in supergravity

theories. In particular, the AdS4;5;7 cases arise through
the maximally supersymmetric AdS × S vacua of string or
M theory in 10=11 dimensions, in which context they can
also be interpreted as the near-horizon geometries of,
respectively, the M2 brane, D3 brane, and M5 brane [8].
The corresponding isometry supergroups are as follows
[the Oðn;KÞ subgroup of OSpðnj4;KÞ is defined to
preserve a K-Hermitian quadratic form on Kn]:

M2∶ AdS4 × S7∶ OSpð8j4;RÞ ⊃ Spinð8Þ × Spinð2; 3Þ;
D3∶ AdS5 × S5∶ OSpð4j4;CÞ ⊃ Uð4Þ × Spinð2; 4Þ;
M5∶ AdS7 × S4∶ OSpð2j4;HÞ ⊃ USpð4Þ × Spinð2; 6Þ:
In theD3-brane case, the AdS=CFT correspondence relates
a four-dimensional N ¼ 4 Yang-Mills theory to IIB super-
string theory in the AdS5 × S5 backgound [9], and the
superstring ground states should be described by a super-
particle invariant under the OSpð4j4;CÞ ≅ SUð2; 2j4Þ iso-
metries of this background.
This motivates a generalization of the twistor formu-

lation of particle dynamics in AdS to a supertwistor
formulation of the superparticle. A direct construction
based on AdS supergeometry would involve a complicated
expansion in superspace coordinates but a simple Minkd
supersymmetrization suffices since the other supersymme-
tries are then implied. This is reminiscent of the “hidden”
supersymmetries of the massive superparticle [10]; as in
that case, all supersymmetries become manifest in a
supertwistor formulation, as anticipated by Cederwall
[7]. For the cases corresponding to the above table, we
find that the supertwistor form of the superparticle action
involves a total of 8 Fermi oscillators, so quantization will
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yield a supermultiplet of 28 ¼ 128þ 128 independent
states, as expected for a maximally supersymmetric grav-
iton supermultiplet in the AdS × S background.
Our constructions are based on the fact that AdSD can be

foliated by Minkowski spacetimes of dimension d ¼
D − 1, so it is convenient to choose coordinates adapted
to this foliation. We will begin by showing how the
Breitenlohner-Freedman (BF) bound on the mass squared
of scalar fields in AdS [11] follows from a semiclassical
quantization of the particle in such a background given that
the motion on Minkowski “slices” is nontachyonic.
We start from the phase-space form of the action,

invariant under reparametrizations of the particle’s world
line, which is embedded in aD-dimensional spacetime with
metric gMN in local coordinates xM:

S ¼
Z

dt

�
_xMpM −

1

2
eðgMNpMpN þm2Þ

�
: ð1Þ

We use a “mostly plus” signature convention, and eðtÞ is a
Lagrange multiplier for the mass-shell constraint. Given
an AdSD background of radius R, we may choose the
metric to be

ds2 ¼ gMNdxMdxN ¼ R2

z2
ðηmndxmdxn þ dz2Þ; ð2Þ

where fxm;m ¼ 0; 1;…; d − 1g are Minkowski coordi-
nates for the Minkd slices, which are the hypersurfaces
of constant z. AdS infinity is at z ¼ 0 and there is a Killing
horizon at z ¼ ∞.
We can now rewrite the action as

S ¼
Z

dt

�
_xmpm þ _zpz −

1

2
~eðp2 þ Δ2Þ

�
; ð3Þ

where R2 ~e ¼ z2e and

p2 ¼ ηmnpmpn; Δ2 ¼ p2
z þ ðmR=zÞ2: ð4Þ

Let us remark here that the physical phase space has
dimension 2D − 2 ¼ 2d because the constraint also gen-
erates a gauge invariance, thereby lowering the dimension
by 2, and this must be the physical phase-space dimension
of any equivalent action in other variables.
A feature of the action (3) is that Δ is a constant of the

motion. Consequently, the motion within the ðx; pÞ sub-
space of phase space is that of a free particle of mass Δ in
Minkd. The mass m affects directly only the motion in the
ðz; pzÞ phase plane. For m ¼ 0 we have _pz ¼ 0 and the
motion in this phase plane is linear. For m2 > 0 it is
convenient to choose Δ > 0 and to write

pz ¼ Δ cosφ;
mR
z

¼ Δ sinφ; ð5Þ

for angular variable φ; the motion in the ðΔ;φÞ plane is
circular. Notice that z ¼ ∞whenever sinφ ¼ 0, which tells
us that the particle will pass through two Killing horizons of
AdS as φ increases by 2π. Because of the periodic

identification of the global time coordinate of AdS and
the fact that there is only one future and one past Killing
horizon in one period, a timelike geodesic will return to the
same point in spacetime after crossing both Killing hori-
zons. In this case we should identify φ with φþ 2π.
However, a particle that crosses a Killing horizon of the
simply connected cover of AdS will never return to the
same point in spacetime or even the same point in space, so
we should not assume that φ is periodically identified in
this case.
We may also allow m2 < 0 as long as Δ2 > 0, which

implies that

ðmRÞ2 > −ðzpzÞ2: ð6Þ
Although ðzpzÞ2 is nonzero on spacelike geodesics there is
otherwise no classical restriction on its value, which could
be zero. However, the quantum uncertainty principle
implies that its smallest value is ðΔzΔpzÞ2 ¼ ðℏ=2Þ2.
Quantum mechanics therefore implies the inequality

ðmR=ℏÞ2 > −
1

4
: ð7Þ

This is not yet a bound on the mass parameter M of the
Klein-Gordon equation obeyed by the particle’s wave
function. For m ¼ 0 the classical action (3) is invariant
under the conformal isometry group of AdSD and a
quantization preserving this symmetry will yield a Klein-
Gordon equation with mass parameter Mc satisfying
ðMcRÞ2 ¼ −DðD − 2Þ=4 [12]. The Klein-Gordon mass-
parameter M is, therefore, given by M2 ¼ M2

c þ ðm=ℏÞ2,
and the bound it satisfies is

ðMRÞ2 ≥ ðMcRÞ2 −
1

4
¼ −d2=4: ð8Þ

We have allowed for equality here without obvious justi-
fication; apart from this detail, we have now recovered the
BF bound for a scalar field in an AdS spacetime of arbitrary
dimension D ¼ dþ 1 [13].
This result suggests that we should allow all values ofm2

for which Δ2 > 0. Of particular relevance here is the fact
that in all such cases

_zpz ¼ −zpzΔ−1 _Δþ d
dt

ð� � �Þ: ð9Þ

Using this result, and ignoring a total derivative, we deduce
that the action (3) is equivalent to

S ¼
Z

dt

�
_xmpm −

zpz

Δ
_Δ −

1

2
~eðp2 þ Δ2Þ

�
: ð10Þ

For m ¼ 0 we have Δ ¼ pz. For m2 > 0 we have
zpz ¼ mR cotφ, which implies that φ is the remaining
phase space coordinate (and for m ¼ ijmj we have zpz ¼
mR cothψ where Δ can have either sign and ψ ¼ −iφ).
For d ¼ 3, 4, 6 we may replace the Minkd coordinates by

a 2 × 2K-Hermitian matrixX over K ¼ R;C;H. Similarly,
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we may replace the d momentum by a 2 × 2 K-Hermitian
matrix P such that detP ¼ −p2 (Hermitian quaternionic
matrices have an intrinsically defined real determinant
[14,15]). We then have

_xmpm ¼ 1

4
trð _XPþ P _XÞ≡ 1

2
trRð _XPÞ; ð11Þ

where “trR” indicates the real part of the matrix trace. We
now write

P ¼∓ UU†; ð12Þ
whereU is a new 2 × 2matrix variable and the top (bottom)
sign is for positive (negative) p0. The mass-shell constraint
is now

detðUU†Þ ¼ Δ2: ð13Þ
Effectively, we have replaced the d momentum by a pair of
two-component Minkd spinors, alias 2-vectors of Slð2;KÞ
[16]. This has introduced a new gauge invariance since U
is acted upon from the left by Slð2;KÞ but from the right
by [7]

Oð2;K ¼ R;C;HÞ ¼ Oð2Þ; Uð2Þ; Spinð5Þ: ð14Þ
This ensures that U is determined by the d real variables pm
up to an Oð2;KÞ gauge transformation. We now find that

_xmpm ¼ trRð _UW†
0Þ þ

d
dt

ð� � �Þ; W0 ¼ �XU: ð15Þ

From the definition of W0, which is also acted upon by
Slð2;KÞ from the left and by Oð2;KÞ from the right, it
follows that

U†W0 −W†
0U≡ 0: ð16Þ

In the context of a particle in Mink3;4;6 of massΔ, we would
take the Lagrangian to be L ¼ trRð _UW†

0Þ and impose the
identity (16) as a constraint with a Lagrange multiplier. The
component constraints span the Lie algebra ofOð2;KÞwith
respect to the Poisson brackets implied by Eq. (15), and,
hence, generate the required Oð2;KÞ gauge invariance of
the action; they are the spin-shell constraints of the
bitwistor action for the massive particle in Mink3;4;6
[17–19] (and they also arise in other contexts, e.g.,
Ref. [20]). Of course, in this context we would also need
to impose the newOð2;KÞ invariant but Spð4;KÞ-violating
mass-shell constraint (13).
However, we are dealing with a particle in AdSD and an

action (10) for which Δ is a phase-space coordinate. In this
context we may interpret the new mass-shell condition as
providing an expression for Δ in terms of U, which is such
that

Δ−1 _Δ ¼ trRð _UVÞ; V ≡ U−1: ð17Þ
We remark that the left and right inverses ofU are equal even
for K ¼ H [21]. Taking into account Eq. (15), we now have

_xmpm −
zpz

Δ
_Δ ¼ trRð _UW†Þ þ d

dt
ð� � �Þ; ð18Þ

where

W ¼ �XU − zpzV†: ð19Þ
This expression for W implies the identity

G ≔ U†W −W†U≡ 0; ð20Þ
which again becomes a constraint to be imposed by an anti-
K-Hermitian LagrangemultiplierL in the action. There is no
longer any mass-shell constraint, so the action is

S ¼
Z

dt trRf _UW† − LGg: ð21Þ

There are ð3 dimK − 2Þ first-class constraints on 8 dimK
variables, yielding a physical phase space of dimension
2ðdimKþ 2Þ ¼ 2d, as required.
The 4 × 2 matrix with K-Hermitian conjugate ðU†;W†Þ

is a pair of Mink3;4;6 twistors; i.e., a bitwistor, acted upon
from the left by Spð4;KÞ and from the right by Oð2;KÞ.
The Noether charges for the Spð4;KÞ invariance of the
action (21) are the gauge-invariant bitwistor bilinears

∓ UU† ¼ P; UW† ¼ −PX − zpz;

�WW† ¼ −XPX − 2zpzXþ ½z2 − ðmR=ΔÞ2� ~P; ð22Þ
except that the imaginary part of trðUW†Þ should be
omitted for d ¼ 4 since this is the trace of G. The last
line uses the mass-shell constraint (13) and the relation

�Δ2V†V ¼ ~P≡ P − trRP: ð23Þ
The matrix ~P represents the d-vector ηmnpn, and is such
that det ~P ¼ −p2 and trRðP ~PÞ ¼ 2p2.
For m ¼ 0, these Noether charges are those associated

with invariance under the AdSD isometry group. In the
D ¼ 4 case there is a larger linearly realized symmetrybecause
there is an antisymmetric second-order invariant tensor of the
SOð2Þ gauge group. Using the corresponding matrix E, and
noting that U†W is Oð2Þ invariant, we can write down
additional 4þ 1 ¼ 5 quadratic Noether charges: UEW†

andU†W þW†U. The full set of quadratic charges (omitting
G itself) spans the Lie algebra (with respect to Poisson
brackets) of the AdS4 conformal isometry group SOð2; 4Þ.
When m ≠ 0 the expression for WW† in Eq. (22)

contains an additional term that is not linear in momenta.
This shows that the linearly realized Spð4;KÞ symmetry
group is no longer the Spð4;KÞ isometry group [and it
explains how the action (21) manages to be independent of
the mass m]. In the K ¼ C case, and m2 > 0, this
conclusion can be changed by setting

W ¼ ~W þ iðmRÞV†: ð24Þ
Replacing WW† by ~W ~W† eliminates the unwanted
m-dependent term in this Noether charge. At the same
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time, the action in terms of ~W is unchanged from Eq. (21)
except that the 2 × 2 anti-Hermitian matrix constraint
function now takes the form

G ¼ U† ~W − ~W†Uþ 2imR: ð25Þ
In other words, the Uð1Þ constraint function 1

2
trG has been

shifted by 2imR, as found directly in the AdS5 construction
of Ref. [6]. This possibility is available only for K ¼ C
because there is no imaginary unit for K ¼ R and a choice
of one for K ¼ H breaks the Spin(5) gauge invariance. This
difficulty can be circumvented by using a quartet of
twistors, instead of a bitwistor, but only at the cost of
introducing second-class constraints [7].
We now return to the action (10) and extend its manifest

Poincaré invariance on Minkd slices to an N-extended
super-Poincaré invariance. In the Slð2;KÞ notation this is
achieved by the replacement [22]

_X → _Xþ
XN
i¼1

ðΘ†
i
_Θi − _Θ†

iΘiÞ; ð26Þ

where the N anticommuting two-component spinors Θi are
acted upon from the left by OðN;KÞ and from the right by
Slð2;KÞ. We have adopted the convention that K con-
jugation (in contrast to K-Hermitian conjugation) does not
change the order of anticommuting factors, so the addition
to _X is Hermitian. This construction ensures the existence
of N Slð2;KÞ spinor supercharges Qi.
Next, we proceed as before to the twistor form of the

action, introducing the new anticommuting Lorentz scalar
variables

Ξi ¼ ΘiU; ð27Þ
which are acted upon from the left byOðN;KÞ and from the
right by the Oð2;KÞ gauge group. One finds, omitting a
total derivative, that the action is

S ¼
Z

dt trRf _UW† ∓ Ξ†
i
_Ξi − LGg; ð28Þ

where now

W ¼ �ðXU − Θ†
iΞiÞ − zpzV†; ð29Þ

which leads to the new Oð2;KÞ generators
G ¼ U†W −W†U� 2Ξ†

iΞi: ð30Þ
The ð4þ NÞ × 2 matrix with K-Hermitian conjugate

ðU†;W†;Ξ†
i Þ is a bisupertwistor, acted upon from the

right by the Oð2;KÞ gauge group and from the left by
OSpðNj4;KÞ. The supersymmetry charges are Qi ¼ ΞiU†

and Si ¼ ΞiW†, which is double the number guaranteed by
the construction. In the K ¼ C case we can again allow for
m2 > 0 by making the substitution (24) in the action, but
now we must replace not only the Noether chargeWW† by
~W ~W† but also Si by

~Si ¼ Ξi

�
~W† −

1

4
V trG

�
; ð31Þ

which is physically equivalent to Ξi ~W† but the m depend-
ence of ~W is canceled by that of trG.
Choosing N ¼ 8= dimK we get, for m ¼ 0, the invari-

ance supergroups of the string or M-theory AdS × S
vacua tabulated earlier. In each case there are 8 Fermi
oscillators so we get a supermultiplet of 28 ¼ 128þ 128
states, which is the degeneracy of the expected graviton
supermultiplet. In light of the connection between the
division algebras R, C, H, O and supersymmetric gauge
theories in dimensions d ¼ 3, 4, 6, 10 [23], our results
suggest that there should be some corresponding con-
nection to the maximal gauged supergravity theories in
dimensions D ¼ 4, 5, 7, and perhaps D ¼ 11 with
“OSpð1j4;OÞ” as the AdS11 supergroup [24]. Also, the
fact that a pair of supertwistors is needed to describe a
graviton supermultiplet, whereas a single supertwistor
suffices for a 4D Maxwell supermultiplet (to take the
K ¼ C case) could be viewed as support for the proposal,
recently reviewed in Ref. [25], that gravity is the
“square” of Yang-Mills theory.
Finally, we consider strings in AdSD. A bitwistor action

for the Nambu-Goto string in Minkd was found in Ref. [26]
but the constraints are not all quadratic and its extension to
an AdSD background is far from obvious. Here we consider
the closed null string in AdS4;5;7. As the twistor formulation
makes manifest invariance under AdS isometries, and
conformal isometries for AdS4, this may be useful for
investigations into the proposed link to higher-spin theories
[27–29]. A string-inspired twistor model, but without spin-
shell constraints, has been used previously for this purpose
[30], and higher-spins emerge from the twistor form of the
AdS (super)particle when its spin-shell constraints are
relaxed [7], but the relation of higher spin theory to the
null string remains conjectural.
Following the massless particle example, the standard

phase-space action for the closed null string in AdSD can be
put in the form

S ¼
Z

dt
I

dσ

�
_XmPm þ _ZPZ −

1

2
~eðP2 þ P2

zÞ

− lðX0mPm þ Z0PZÞ
�
; ð32Þ

where all variables are now functions of the world sheet
coordinates ðt; σÞ and l is the Lagrange multiplier for the
string reparametrization constraint. The twistor form of the
action is found as before, with the result that

S ¼
Z

dt
I

dσftrRð _UW† − LGÞ − lΩg; ð33Þ

where Ω is the twistor version of the string reparametriza-
tion constraint
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Ω ¼ trRðW0U† −W†U0Þ: ð34Þ

This result has an obvious extension to the null p brane,
and supersymmetry may be incorporated as for the particle.
The zero-mode contribution is the bitwistor action for the
massless (super)particle.
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