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We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in
Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently
developed mode-sum regularization method to compute the RSET of a minimally coupled massless
scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole.
The computation is done here for the case a ¼ 0.7M, using two different variants of the method: t splitting
and φ splitting, yielding good agreement between the two (in the domain where both are applicable).
We briefly discuss possible implications of the results for computing semiclassical corrections to certain
quantities, and also for simulating dynamical evaporation of a spinning black hole.
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Like many great discoveries, Hawking’s discovery of
black-hole (BH) evaporation [1] opened a number of new
profound questions. Two such outstanding questions are
the information loss puzzle, and—more generally—what is
the end state of BH evaporation. A natural line of inquiry
involves the systematic study of the semiclassical evapo-
ration process. Hawking’s original analysis uses quantum
field theory in curved spacetime to determine the flux that a
BH emits to infinity. However, a more detailed investiga-
tion of BH evaporation requires not just the outflux at
infinity but also the full renormalized stress-energy tensor
(RSET) hTαβiren, namely, the contribution of the quantum
field fluctuations to the local stress-energy tensor. It can
then be inserted in the semiclassical Einstein equation

Gαβ ¼ 8πhTαβiren
to investigate the back-reaction on the metric. Here, Gαβ is
the Einstein tensor, and throughout this Letter we use
general-relativistic units G ¼ c ¼ 1, along with ð−þþþÞ
signature.
The calculation of the RSET is a long-standing chal-

lenge, even for a prescribed background metric. The naive
quantum-field computation yields a divergent mode sum.
To renormalize it one can use the point-splitting procedure,
originally developed by DeWitt [2] for hϕ2iren and later
adjusted to the RSET by Christensen [3]. The point-
splitting scheme proves to be very useful when the field
modes are known analytically. However, in our case of
interest—BH backgrounds—the field’s modes are known
only numerically, making the naive implementation of the
scheme impractical. To overcome this difficulty, Candelas,
Howard, Anderson and others [4–7] developed a method
to implement point splitting numerically. This method
requires a fourth order WKB expansion. Since performing
high-order WKB expansion is extremely difficult in

Lorentzian spacetime, they used Wick rotation and carried
out the actual calculation in the Euclidean sector. This
clever trick is very restrictive, however, as the Euclidean
sector does not generically exist. The most general case
where this method was implemented is a static spherically
symmetric background [7,8].
Note also that on going to the Euclidean sector one

cannot compute the RSET directly in the Unruh state, as the
latter is not defined there. Instead, one has to compute
another state (e.g., Boulware) in the Euclidean sector, and
then use the technique introduced by Elster [10] to compute
the difference between two states (a nondivergent quantity)
in the Lorentzian sector. This method was used to compute
the RSET in Schwarzschild in the Unruh state for the
conformally coupled scalar field [10] and also for the
electromagnetic field [11].
Thus far there is no method for calculating the RSET in

the Kerr geometry of a rotating BH. The traditional method
[4–7] is inapplicable because the Kerr geometry is neither
spherically symmetric nor static—and does not admit a
Euclidean sector. Understanding the evaporation of rotating
BHs is crucial, since most BHs in nature are expected to
have significant spin.
The above discussion highlights the importance of gen-

eralizing the methods of RSET computation from spherical
static BHs to the Kerr case. Over the years Ottewill, Casals,
Winstanley, Duffy, and others made remarkable progress by
posing various quantum states on the Kerr metric [12,13],
and also by computing RSET differences between pairs
of quantum states [13,14] (which are regular). Another
approach was to compute the RSET for rotating BHs in
2þ 1D [15,16] as a toy model for 3þ 1D.
In this Letter, we provide the first calculation of the

RSET in Kerr spacetime. We employ the novel approach
for implementing point splitting in BH spacetimes recently
introduced by two of the authors (Levi and Ori) [17–19],
which we shall refer to as the “pragmatic mode-sum
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regularization” (PMR) method. This method does not resort
to the Euclidean sector or to WKB expansion. Basically it
only requires the background to admit a single (continuous)
symmetry. PMR comes in several variants, depending on
the symmetry being employed. So far two variants were
introduced in detail, the t-splitting [17] and angular-
splitting [18] variants, applicable to stationary or spheri-
cally symmetric backgrounds, respectively. For the sake of
simplicity the presentation in Refs. [17,18] was restricted to
the regularization of hϕ2i, which is technically simpler. A
third variant, φ splitting (also called “azimuthal splitting”),
aimed for axially symmetric backgrounds, was also briefly
introduced, in a very recent Letter [19], which presented the
RSET computation in Schwarzschild using PMR. All three
variants were used in that Letter, showing very good
agreement between the three splittings.
Because PMR requires only one symmetry, it can

actually be used to compute the RSET in Kerr in two
different ways, once using t splitting and once using φ
splitting. The former primarily relies on the field decom-
position in temporal modes e−iωt, and the latter on
(discrete) decomposition in azimuthal modes eimφ.
Having two independent regularization variants is advanta-
geous as it allows one to test the method’s consistency as
well as numerical accuracy. Moreover, each splitting
variant breaks down in a certain locus, where the norm
of the associated Killing field vanishes. This happens to t
splitting at the ergosphere boundary, and to φ splitting at
the polar axis. In reality, the splitting variant becomes
problematic also in some neighborhood of that singular
locus. Using the two variants allows one to compute the
RSET almost everywhere outside the BH.
In this Letter we present the results obtained (from both t

splitting and φ splitting) for hϕ2iren and hTαβiren in Kerr
background, for a minimally coupled massless scalar field
in the Unruh state [20]—the quantum state representing an
evaporating BH.
Kerr metric and modes computation.—The Kerr metric

in Boyer-Lindquist coordinates is

ds2 ¼ −
Δ
Σ
ðdt − asin2θdφÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

½ðr2 þ a2Þdφ − adt�2;

where Δ≡ r2 − 2Mrþ a2 and Σ≡ r2 þ a2 cos2 θ, M is
the BH mass and a its angular momentum per unit mass.
We have chosen to work here on the case a ¼ 0.7M, which
is strongly motivated by the BH merger outcomes in the
two recent LIGO detections [21]. The field modes were
constructed according to the boundary conditions formu-
lated by Ottewill and Winstanley [12]. The computation
was done by solving the spin-0 Teukolsky equation using a
numerical implementation [22] of the Mano-Suzuki-
Takasugi (MST) formalism [23,24]. Modes were computed

for −60 ≤ m ≤ 60 and for ω from zero to ωmax ¼ 8 M−1

with uniform spacing of0.01 M−1. For eachω andm the sum
over l was preformed until sufficient convergence was
achieved. In total, just over 4 million lmωmodes were used.
Results for hϕ2iren in Kerr.—In calculating hϕ2iren using

t splitting [17], one has to integrate a certain function
FregðωÞ over ω. This function contains oscillations, origi-
nating from “connecting null geodesics” (CNGs), [17]
whose wavelengths (in ω) are dictated by the length (in
t) of these CNGs. The self-cancellation method introduced
in Ref. [17] to eliminate the oscillations requires knowledge
of these wavelengths. In the Schwarzschild case we deter-
mined them by numerically finding the CNGs. In Kerr,
however, it is a bit more difficult to compute the CNGs.
We therefore used two alternative techniques. The first was
finding thewavelengths from a Fourier transform ofFregðωÞ,
and self-canceling the oscillations according to the recipe of
Ref. [17]. The secondwas simply to apply a low-pass filter to
FregðωÞ to eliminate the oscillations. The two techniques
produced very similar results.
We also computed hϕ2iren using φ splitting. This variant,

which was used recently [19] for the computation of
hTαβiren in Schwarzschild, will be presented in detail
elsewhere [25]. We should mention, briefly, that in
φ-splitting regularization we first sum the lmω mode
contributions over l (a convergent sum), to obtain the
functions Fðω;mÞ. Next we regularize the integrals of
Fðω;mÞ over ω (for each m), and finally we regularize the
sum over m. Here, too, one finds that Fðω;mÞ exhibits
oscillations inω. In some analogy with the angular-splitting
case [18], these oscillations originate from CNGs in a
fictitious 2þ 1 dimensional spacetime (obtained from the
Kerr metric by eliminating the φ coordinate). We were able
to numerically compute these reduced-dimension CNGs
and to obtain the oscillations’ wavelengths, which we then
used to self-cancel the oscillations. After integrating the
(smoothened and regularized) functions Fðω;mÞ over ω,
the sum over m is regularized using a discrete Fourier
decomposition of the counterterms, in analogy to the
Fourier decomposition of the latter in t splitting [17].
Figure 1 displays the results for hϕ2iren versus θ (for

various r values) in the Unruh state, for a ¼ 0.7M, obtained
using both variants: t splitting in solid curves, and φ
splitting in “þ” symbols. Here, and also in all other figures,
numerical results are given in units M ¼ 1 (in addition to
G ¼ c ¼ 1). Note that for φ splitting we only give results
for θ ≥ 30° because its accuracy rapidly deteriorates on
getting closer to the pole [26]. The agreement between the
two variants is better than one part in 103 throughout the
domain presented. This agreement steadily improves with
increasing θ: At θ ≥ 50° it is better than two parts in 105,
and for θ ¼ 90° it is about one part in 106. We can
independently estimate the accuracy of our t-splitting
results, it is usually better than one part in 106 (throughout
4M ≤ r ≤ 10M). Therefore, throughout the domain shown
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in Fig. 1 we may associate the disagreement between the
two variants with the inaccuracy in φ splitting [27].
Results for RSET in Kerr.—The numerical computation

of the RSET is much more challenging. It requires more
modes and also higher accuracy for each mode, because the
divergence is stronger. As a consequence, our numerical
results for hTαβiren are less accurate than for hϕ2iren [28].
We point out that hTθtiren and hTθφiren identically vanish

(mode by mode) for our massless scalar field. In addition,
hTrtiren and hTrφiren are individually conserved compo-
nents that do not require any regularization. These two
components are further addressed below. We shall refer to
the remaining six components, which do require regulari-
zation, as “nontrivial.” Figure 2 displays results for the six
nontrivial components of hTαβiren in the Unruh state, as
functions of r, for two rays: θ ¼ 90° and θ ¼ 0°. In the
latter φ splitting is invalid; hence, only t splitting results are
shown. At θ ¼ 90° we provide results from both t splitting
and φ splitting.
We estimate the accuracy of the t-splitting results to be

better than one part in 103 (throughout r ≥ 2.5M). The
disagreement between the two variants at the equator is at
worst ∼4% (for r ¼ 2.5M), but it is usually better than
∼1%, it improves with increasing r, and at r ¼ 10 it is
about one part in 103. Here again, the disagreement
between the two variants is predominantly associated to
limited accuracy of φ splitting.
Figure 3 displays all six nontrivial RSET components as

functions of θ for r ¼ 6M. The t-splitting results are
estimated to be accurate to about one part in 103. We also
present results from φ splitting for θ ≥ 30°. The disagree-
ment between the two is fairly large (easily visible) at
θ ¼ 30°, but it improves with increasing θ. It is a few
percent for θ ¼ 35° and reduces to a few parts in 103 at the
equator.

Energy-momentum conservation and conserved fluxes.—
An important consistency check of the computed RSET is
energy-momentum conservation ðhTαβirenÞ;β ¼ 0. In the
PMR method one subtracts certain known tensors (derived
from Christensen’s counterterms) from the otherwise-
divergent mode sum. We have analytically checked that
these tensors are all conserved. This ensures that the resultant
RSET is conserved too, because the contribution from the
individual modes is guaranteed to be conserved. We have
also directly checked, numerically, the conservation of our
resultant RSET [29].

FIG. 1. Results for hϕ2iren × r2 in the Unruh state in Kerr, from
both t splitting (solid curves) and φ splitting (þ symbols).

FIG. 2. The six nontrivial RSET components as functions of r.
The solid curves andþ symbols are results at θ ¼ 90° from t
splitting and φ splitting, respectively. The dashed curves are
t-splitting results at θ ¼ 0. Notice that hTrθiren (green line)
vanishes at both the pole and equator, due to obvious symmetry
properties. Also, hTφφiren ¼ hTtφiren ¼ 0 at the pole.

FIG. 3. The six nontrivial RSET components at r ¼ 6M as
functions of θ. The solid curves and theþ symbols are results
obtained from t splitting and φ splitting, respectively. The
deviations between the two are visible at θ ¼ 30°.

PRL 118, 141102 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 APRIL 2017

141102-3



Two components of the conservation equation, α ¼ t and
α ¼ φ, yield especially simple conservation laws:

hTrtiren ¼ −KðθÞ=Δ; hTrφiren ¼ LðθÞ=Δ:
The r-independent quantities KðθÞ and LðθÞ, respectively,
represent the outgoing energy and angular-momentum flux
densities (multiplied by r2), as measured by far observers
placed at various θ values. Note that these fluxes do not
vanish even in the Boulware state, due to the Unruh-
Starobinsky effect [30,31]. Our results for KðθÞ and LðθÞ
are displayed in Fig. 4, for both Unruh and Boulware states.
Although the computation of KðθÞ and LðθÞ does not
require regularization, to the best of our knowledge it is the
first time they are presented for a scalar field (results for
electromagnetic field are given in Ref. [13]).
The integrals of KðθÞ and LðθÞ over the entire two-

sphere yield the total energy flux f and angular-momentum
flux g emitted to infinity. In the Unruh state we obtain
f ¼ 7.166 × 10−5ℏ=M2 and g ¼ 1.8116 × 10−4ℏ=M. Of
course, these quantities can also be directly computed using
Hawking’s original method [1], which only requires
numerical computation of the reflection and transmission
coefficients. This calculation (for a scalar field in Kerr) was
done by Taylor, Chambers, and Hiscock [32]. Our results
agree with their computation to better than 1%, which is
their declared accuracy. To examine it more carefully we
have repeated their Hawking-radiation calculation, using
the MST method [22] for the reflection and transmission
coefficients. We found agreement better than one part in
104 with the above mentioned results for f and g (obtained
from integrating K, L).

For the Boulware state we obtain the integrated fluxes
fB ¼ 1.265 × 10−6ℏ=M2 and gB ¼ 1.2187 × 10−5ℏ=M,
which express the Unruh-Starobinsky effect.
Discussion.—We have provided the first calculation of

hϕ2iren and hTαβiren around a spinning BH. For concrete-
ness we studied a minimally coupled massless scalar field,
in both Unruh and Boulware states. For brevity we mostly
presented results for the more realistic Unruh state, which
represents physical evaporating BHs. In addition, for the
Boulware state we displayed the fluxes of energy and
angular momentum to infinity (the Unruh-Starobinsky
effect).
The regularization was done once using the t-splitting

variant, exploiting Kerr’s stationarity, and once using the
φ-splitting variant, exploiting its axial symmetry, with good
agreement between the two variants in the regime where
they both function properly. The usage of the two variants
enables us to cross-check our results, and helps assessing
the numerical accuracy.
In the domain of r and θ for which we have presented

results, t splitting always providedmore accurate results (this
would change on approaching the ergosphere boundary,
where the temporal Killing field becomes null). In t splitting,
the typical relative error in the RSET is very small,∼0.1%. It
is dominated by truncating the mode sum in l (and m).
The φ-splitting variant is much more challenging, as it

actually requires two regularizations: the integral over ω
(as in t splitting), and also the sum over m. Here the errors
are dominated by the finite value of ωmax. The accuracy
drops rapidly on approaching small θ values: say, for
r ¼ 6M, at θ ≲ 15° for hϕ2iren and at θ ≲ 35° for hTαβiren.
This problem is caused by the aforementioned oscillations
in FregðωÞ. The wavelength (in ω) of these oscillations
grows ∝ 1=θ near the poles, which would in turn require
similar increase in ωmax to maintain the accuracy. However,
increasing ωmax is very expensive numerically.
The φ-splitting variant is a crucial step towards inves-

tigating back-reaction effects in time-dependent, spinning,
evaporating BHs. [33] Currently, the poor performance
near the poles is still an obstacle, but we are optimistic
about improving this in the future.
In this work, we demonstrated the PMR method for a

scalar field in the exterior of a Kerr spacetime with spin
a ¼ 0.7M. Without further modification it can be applied to
other values of the spin. Moreover, it will be interesting to
extend this analysis to the interior of the ergosphere and the
horizon. This is important for understanding how semi-
classical effects would modify the internal structure of
spinning BHs. The basic principles of the method are also
applicable to other fields, e.g., the electromagnetic field, or
more general axisymmetric spacetimes such as the geom-
etry outside of a rapidly rotating relativistic star (e.g., a
neutron star).
Full detail of this analysis of hϕ2iren and hTαβiren in a

Kerr BH will be presented elsewhere.

FIG. 4. The energy flux KðθÞ and angular-momentum flux
LðθÞ. The solid curves are results in the Unruh state, and the
dashed curves are in the Boulware state—both obtained using t
splitting at r ¼ 10M. Theþ symbols are results obtained using φ
splitting at r ¼ 3M (also confirming the r independence of K
and L).
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