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Bell correlations, indicating nonlocality in composite quantum systems, were until recently only seen in
small systems. Here, we demonstrate Bell correlations in squeezed states of 5 × 105 87Rb atoms. The
correlations are inferred using collective measurements as witnesses and are statistically significant to 124
standard deviations. The states are both generated and characterized using optical-cavity aided
measurements.
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Progress in the control of quantum systems has been
accompanied by the development of metrics quantifying
quantum correlations in many-body systems [1–4]. A
widely adopted measure for systems with large numbers
of particles is the depth of entanglement [5–7]. This
measure characterizes the minimal number of particles
that are mutually entangled in a system. However, not all
types of quantum correlations can be classified using the
concept of entanglement alone [8,9]. An example is the
Bell-type correlations which are exhibited by quantum
systems violating Bell’s inequalities [10].
Demonstrating nonlocal Bell correlations was restricted

to small systems in which the individual components of a
composite quantum system can be measured directly.
Bell correlations have been shown with photons [11–14],
ions [15], atoms [16], solid-state spins [17], and nitrogen-
vacancy centers [18]. To extend the investigation of Bell
correlations to larger systems, a new framework was
developed in Ref. [19] that enables observation of Bell
correlations without accessing individual components of a
system. This framework provides a method to witness
whether a quantummany-body system features nonlocality,
as evidenced by Bell correlations. The method was
employed in Ref. [20] with measurements that access only
the collective observables of a Bose-Einstein condensate of
480 87Rb atoms to demonstrate Bell correlations with a
statistical significance of 3.8 standard deviations. In this
Letter, we show Bell correlations in spin-squeezed states in
a thermal ensemble of 5 × 105 87Rb atoms at 25 μK which
are statistically significant to 124 standard deviations.
While our result demonstrates the presence of Bell corre-
lations, it cannot be used to perform loophole-free tests of
Bell’s inequalities, as the measurement duration is longer
than the time of flight for light across the sample (the no-
communication loophole [8]), and the Bell correlation
witness [Eq. (2)] a priori assumes quantum mechanics
in its derivation [20].
We describe our atomic ensemble as a system of N

spin-1=2 particles. Experimentally, we utilize the clock
states of 87Rb and define jF ¼ 2; mF ¼ 0i≡ j↑i and

jF ¼ 1; mF ¼ 0i≡ j↓i as our pseudospin states. For a
measurement of the ith spin on a given axis m, only

two measurement outcomes are possible, jðiÞm ¼ �1=2.
Considering two possible axis choices, defined by the unit
vectors m and n, the quantities relevant for constructing a

Bell inequality are the expectation values hjðiÞm i and the

correlations hjðiÞm jðkÞm i, hjðiÞm jðkÞn i, hjðiÞn jðkÞn i. Simple algebraic
combinations of these one- and two-body correlators, such
as Sm ¼ 2

P
N
i¼1hjðiÞm i and Smn ¼ 4

P
N
i;k¼1;i≠k hjðiÞm jðkÞn i,

lead to a Bell inequality under the assumption of permu-
tation symmetry of the spins in the system [19]:

2Sm þ Smm=2þ Smn þ Snn=2þ 2N ≥ 0: ð1Þ
This Bell inequality can be used to derive a Bell

correlation witness requiring measurements of only the
collective spin vector J≡P

N
i¼1 j

ðiÞ, where jðiÞ ¼
ðjðiÞx ; jðiÞy ; jðiÞz Þ. The presence of Bell correlations can then
be probed with measurements of these collective observ-
ables alone [20,21]. This is analogous to the widely adopted
entanglement depth measure for characterizing entangle-
ment in systems with large numbers of particles [5–7],
which makes an inference on the size of entangled clusters
from measurements of collective observables. Note that
these kinds of inferences require repeated observations of
identically prepared states of the system.
A particular class of collective states that can violate

Eq. (1) are spin-squeezed states [22]. For a symmetric
collective state of N spins, assuming a mean polarization
along the x direction, the uncertainty of two orthogonal
components of J is limited by the relation ΔJz ΔJy ≥ N=4.
Spins that are each independently polarized along the x
direction comprise a coherent spin state (CSS), an unen-
tangled minimum uncertainty state where ΔJz ¼ ΔJy ¼ffiffiffiffi
N

p
=2 defines the CSS noise. Spin squeezing redistributes

the uncertainty from one conjugate variable to the other,
generating entanglement between the spins in the process.
As a consequence of the uncertainty principle, reduction in
uncertainty in one conjugate variable (squeezing) comes at
the expense of a corresponding increase in the uncertainty
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for the other conjugate variable (antisqueezing). For suffi-
cient amounts of squeezing, the squeezed states may also
contain Bell correlations.
Choosing a specific set of measurement axes determined

by two unit vectors z and n [Fig. 1(a)], the witness function
can be expressed in terms of the expectation values of the
normalized collective spin operators J 1;n ≡ h2Jn=Ni and
J 2;z ≡ h4J2z=Ni, where Jz ≡ z · J and Jn ≡ n · J. The
witness inequality then reads [20]

hWi ¼ −jJ 1;nj þ ðz · nÞ2J 2;z þ 1 − ðz · nÞ2 ≥ 0: ð2Þ
In this expression, the total particle number N inside the
expectation values is allowed to be a fluctuating random
variable, which in our experiment has a 3% standard
deviation from one realization to the next. The first term
can be measured by rotating the collective spin state, which
amounts to changing the angle between z and n. J 1;n can
then be found by measuring the projection of the state on
the z direction after the rotation. The second term, where
hJzi ¼ 0, is simply proportional to the variance of Jz
normalized to the CSS noise. Equation (2) is the first
criterion that we will use to demonstrate Bell correlations.
From Eq. (2), it follows that the inequality

J 2;z <
1

2
½1 − ð1 − J 2

1;xÞ1=2� ð3Þ

also guarantees Bell correlations (a full derivation can be
found in the Supplemental Material of Ref. [20]). Here,
assuming a squeezed state with hJzi ¼ 0, the quantity J 1;x
is simply the coherence of the state. This second criterion is
more robust to experimental noise, and it is with this
criterion that we get the most statistically significant
violation. Similarly to the entanglement depth criterion,
the Bell violation witness function is fully parametrized by
the coherence (the length of the Bloch vector) and the
amount of squeezing in the state [5,6].
The experimental apparatus and preparation of the

squeezed states is described in Ref. [23]. We trap up to
7 × 105 cold atoms in an optical lattice generated by
1560 nm light inside of an optical cavity. The cavity
mirrors are coated to support both 780 and 1560 nm modes.
A 780 nm mode is used to perform quantum nondemolition
(QND) measurements of the collective state of the atoms to
prepare the squeezed states. We set the detuning between
the atomic resonance and the 780 nm cavity mode such that
the effect of the atoms is a state-dependent change in the
refractive index—equal in magnitude but opposite in sign
for the j↑i and j↓i states. The refractive index change then
manifests as a cavity resonance shift, whose measurement
serves as a QND measurement of Jz. The technical noise
limit of this QND measurement is 41 dB below the CSS
noise limit, which means the QND measurement of Jz is
limited only by the quantum noise [23].
For the purposes of showing Bell correlations, we seek

to measure the symmetric collective observable Jz ¼P
N
i¼1 j

ðiÞ
z . A cavity where each atom is identically coupled

to the probe mode would measure this observable. In this
experiment, the 1560 nm light traps the atoms at the peaks
of the 780 nm standing wave intensity profile, enabling
uniform coupling of the atoms to the probe. However, there
is still some residual inhomogeneity due to the finite
temperature of the atoms and the finite size of the cloud,
which extends over ∼1000 lattice sites (780 μm) along the
cavity axis. We can therefore measure only the collective
observable Sz ¼ ð1=ZÞPN

i¼1 ð1 − ϵiÞjðiÞz , where Z is a
normalization constant and ϵi is a small quantity para-
metrizing the reduction from unity in the coupling of atom
i. In our setup, we have measured a ∼5 × 10−3 fractional
variance in the atom-probe coupling (see Ref. [23] for
details on the measurement of the atom-cavity coupling).
This determines the deviation from symmetry in the
measurement of the collective spin observables.
To generate squeezing in our apparatus, the atoms,

initially prepared in the j↓i state, are put in an equal
superposition of the j↑i and j↓i states using a microwave
drive [Fig. 1(b)]. Two QND measurements are then
performed. The first measurement projects the collective
spin state into one with reduced Sz uncertainty and

(a) (c)

(b)

FIG. 1. (a) Illustration of a squeezed spin state. The example is
a Wigner distribution of a 10 dB squeezed state with 30 atoms,
polarized along the x axis. Squeezing is along the z direction,
while antisqueezing is along the y direction. Also shown is the
axis n used to calculate the Bell witness in Eq. (2). (b) The
sequence used for squeezing. The initial state preparation consists
of a composite π=2 pulse and a presqueezing procedure that
squeezes the state in Sz such that the initial uncertainty is smaller
than the cavity linewidth. The two QND measurements then
follow, before a final fluorescence measurement that measures the
atom number. (c) Histogram of the differences in Sz between the
first and second measurements for 18.5(3) dB squeezed states of
6.5 × 105 atoms.
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increased Sy uncertainty. The second measurement verifies
the squeezing by showing better correlation with the first
measurement than is allowed with unentangled states.
Using this method we generate and characterize up to
20 dB of spin squeezing by the Wineland criterion
½jhSxij=ð

ffiffiffiffi
N

p
ΔSzÞ�2 [24]. Following the first measurement

generating the squeezing, we can choose to drive Rabi
oscillations using microwaves, amounting to a rotation of
the collective spin state about the y axis. This way, a
subsequent measurement of Sz allows us to determine Sn
for any chosen angle θ between z and n. Since the
squeezing is conditional on the outcome of the QND
measurement, the inferred hSzi for the prepared squeezed
states is different in each realization. In order to show the
Bell correlations, we therefore choose an axis z0 at each
realization such that the inferred hSz0 i ¼ 0. The shot-to-
shot variation in the chosen axis can be accounted for as
noise in θ in Eq. (2) (see the Supplemental Material [25]).
For our parameters, this noise is small compared to the
noise added by microwave rotation noise.
To relate the measured Sz observable to the properties of

Jz, we use a conservative procedure based on a model that
was verified experimentally [23]. In this model, ϵi depends
on the specific position of the atom and is randomized in
each experimental run. The randomization of the position
can be modeled as an additive noise that would appear in a
measurement of the uniform observable Jz. In our setup,
this additive noise is 16.8(7) dB below the CSS noise [23].
The error on this quantity is estimated from the additive
noises found at three different atom numbers. According to
this model, the squeezed state shown in Fig. 1(c), for
example, which is 18.5 dB squeezed in Sz, is guaranteed to
be squeezed by at least 14.5 dB in Jz. For all Bell
correlation data presented below, we calculate J 2;z accord-
ing to this model. The error on this quantity is obtained by
adding in quadrature the error in the squeezing measure-
ments and the error from the Jz estimation model.
While we measure the squeezing levels using the cavity

probe, the Rabi oscillations needed to determine J 1;n are
characterized using fluorescence imaging since the cavity
does not have the dynamic range to make these measure-
ments. The fluorescence imaging is done by first releasing
the atoms from the optical lattice, then pushing the atoms in
the j↑i state with a laser resonant with the jF ¼ 2i →
jF0 ¼ 3i transition. After a 1.2 ms time of flight, the
spatially separated states are imaged for 2 ms with
resonance fluorescence. The signal from the pushed j↑i
atoms is 20% lower due to lower fluorescence beam
intensity at their location. We performed a calibration to
correct for this and applied it to the raw data. The error in
the calibration procedure is insignificant compared to the
statistical errors for the presented data.
For a data set containing 15.0(7) dB inferred squeezing

in Jz, we plot the observed Rabi oscillations in Fig. 2.
Combining the Rabi oscillation data with the squeezing

FIG. 2. Rabi oscillations of squeezed states of 6.5 × 105 atoms.
(Upperpanel)J 1;n asa functionof themicrowavepulse time.The fit
is sinusoidal and is used to extract the angle for thewitness function
in Fig. 3. The fit shows a contrast of 94.9(1)%. (Lower panel)
Residuals from subtracting the sine fit from the data points. The
increased noise at the J 1;n ≈�1 points is due to antisqueezing.
Fluorescence detection noise dominates at short pulse times, while
microwave amplitude noise takes over at longer pulse times. Pulse
times below 5 μs were not achievable due to control system
limitations.

FIG. 3. The data points show the Bell correlation witness hWi
as a function of θ. The θ values are extracted from the fit in Fig. 2.
The error bars show the combined statistical error from the
measured J 1;n and the total error in the estimated J 2;z value.
Points below the dashed red line show a violation of the
inequality in Eq. (2). The highest violation is from the point
shown in red (and also in the inset) which is 56 standard
deviations from the boundary. The solid blue line is calculated
from the contrast of the fit to the Rabi fringe and the squeezing
level. For a maximally squeezed state with 100% coherence, the
minimum of the witness function would approach −0.25.
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level, we plot the witness function hWi in Fig. 3. All data
points below the dashed line indicate nonlocal correlations
in the prepared squeezed states. The dominant contribution
to the error bars is the noise of the microwave rotation,
which amounts to an uncertainty in the angle θ between z
and n. This leads to increasing uncertainties with an
increasing microwave drive time.
In Fig. 4 we plot our data with the Bell correlation

boundary and entanglement depth boundaries on the
J 2

1;x − J 2;z plane. Here, the J 1;x values of the states were
determined by first performing the squeezing measurement,
then making a microwave π=2 rotation about the y axis to
turn Jx into Jz. The observable Jz was then measured using
fluorescence imaging in 200 repetitions. For error estima-
tion, the fluorescence calibration errors as well as the
statistical errors are taken into account. In Fig. 4, we also
show a data set that was unconditionally squeezed by
8.5 dB. These states were prepared using a similar method
to that in Ref. [28]. The best conditionally squeezed data is
124 standard deviations from the boundary; the corre-
sponding number for unconditional squeezing is 33 (see the
Supplemental Material [25] for details). The largest entan-
glement depth obtained in this analysis is approximately
500. However, using a more optimal entanglement depth
criterion tailored for nonsymmetric probing [29], the best
entanglement depth becomes 1590(130) [25].

In Ref. [20], it was shown that there exist non-Gaussian
states that do not contain Bell correlations, but that
nevertheless violate the witness inequalities in Eqs. (2)
and (3). These non-Gaussian states can only be ruled out by
performing ∼N measurements. As there exists no known
mechanism to generate these non-Gaussian states in our
experiment, here we have assumed that the generated
squeezed states are Gaussian states.
In conclusion, we have shown statistically significant

Bell correlations in a large, thermal ensemble of 87Rb
atoms. Bell correlations measure nonlocality, which can be
used as a resource in quantum information. While the use of
Bell correlations in many-body systems is still unknown,
they have been used to generate random numbers in smaller
systems [31]. Recent experiments have shown large spatial
separation of quantum superpositions of atomic wave
packets [32]. Combining the ideas of spin squeezing with
spatially separated superpositions, the Bell correlations
discussed in this Letter could perhaps be used to test
quantum mechanics in new ways.

We would like to thank Remigiusz Augusiak, Luca
Dellantonio, and Jaya Krishnakumar for the fruitful dis-
cussions. This work was supported by the Office of Naval
Research, the Defense Threat Reduction Agency and the
Vannevar Bush Faculty Fellowship program.

*kasevich@stanford.edu
[1] R. Horodecki, P. Horodecki, M. Horodecki, and K.

Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[2] N. Li and S. Luo, Entanglement detection via quantum
Fisher information, Phys. Rev. A 88, 014301 (2013).

[3] C. W. Helstrom, Minimum mean-squared error of estimates
in quantum statistics, Phys. Lett. 25A, 101 (1967).

[4] S. L. Braunstein and C. M. Caves, Statistical Distance and
the Geometry of Quantum States, Phys. Rev. Lett. 72, 3439
(1994).

[5] A. S. Sørensen and K. Mølmer, Entanglement and Extreme
Spin Squeezing, Phys. Rev. Lett. 86, 4431 (2001).

[6] B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth,
and C. Klempt, Detecting Multiparticle Entanglement of
Dicke States, Phys. Rev. Lett. 112, 155304 (2014).

[7] S. B. Papp, K. S. Choi, H. Deng, P. Lougovski, S. J.
van Enk, and H. J. Kimble, Characterization of multipartite
entanglement for one photon shared among four optical
modes, Science 324, 764 (2009).

[8] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and
S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419
(2014).

[9] A set of examples is displayed in the Werner states, which
are mixed states defined by the density matrix ρ ¼
pjϕþihϕþj þ ð1 − pÞI=4. Here, jϕþi ¼ ð1= ffiffiffi

2
p Þðj↑↑i þ

j↓↓iÞ is a Bell state and the identity matrix I represents
a maximally mixed state. For 1=3 < p < 1=2, these states
are entangled but do not violate any Bell inequalities.

FIG. 4. Entanglement depth and Bell correlation boundaries. The
red line shows the Bell violation boundary according to Eq. (3).
The blue lines show the boundary for k ¼ 2n entanglement depth
for n ¼ 1;…; 9 (labeled below each line). The area below the
black line contains entangled states according to the Wineland
criterion for entanglement [30]. The data points, taken with 5 ×
105 atoms and approximately 450 measurements each, have
measurement strengths going from higher on the left to lower
on the right. The error bars represent 68% confidence intervals.
The open-square data point shows the most statistically significant
demonstration of Bell correlations (the inset is an enlarged version
of this data point). The open-diamond data point shows the result
from a data set of 3286 runs with unconditional squeezing.

PRL 118, 140401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 APRIL 2017

140401-4

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevA.88.014301
https://doi.org/10.1016/0375-9601(67)90366-0
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevLett.112.155304
https://doi.org/10.1126/science.1172260
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419


[10] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable The-
ories, Phys. Rev. Lett. 23, 880 (1969).

[11] M. Eibl, S. Gaertner, M. Bourennane, C. Kurtsiefer, M.
Żukowski, and H. Weinfurter, Experimental Observation
of Four-Photon Entanglement from Parametric Down-
Conversion, Phys. Rev. Lett. 90, 200403 (2003).

[12] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Żukowski,
and J. W. Pan, Experimental Violation of Local Realism by
Four-Photon Greenberger-Horne-Zeilinger Entanglement,
Phys. Rev. Lett. 91, 180401 (2003).

[13] M. Giustina et al., Significant-Loophole-Free Test of Bell’s
Theorem with Entangled Photons, Phys. Rev. Lett. 115,
250401 (2015).

[14] L. K. Shalm et al., Strong Loophole-Free Test of Local
Realism, Phys. Rev. Lett. 115, 250402 (2015).

[15] B. P. Lanyon, M. Zwerger, P. Jurcevic, C. Hempel, W. Dür,
H. J. Briegel, R. Blatt, and C. F. Roos, Experimental
Violation of Multipartite Bell Inequalities with Trapped
Ions, Phys. Rev. Lett. 112, 100403 (2014).

[16] J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W.
Rosenfeld, and H. Weinfurter, Heralded entanglement
between widely separated atoms, Science 337, 72 (2012).

[17] W. Pfaff, T. H. Taminiau, L. Robledo, H. Bernien, M.
Markham, D. J. Twitchen, and R. Hanson, Demonstration
of entanglement-by-measurement of solid-state qubits, Nat.
Phys. 9, 29 (2013).

[18] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb,
M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N.
Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W.
Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S.
Wehner, T. H. Taminiau, and R. Hanson, Loophole-free
Bell inequality violation using electron spins separated by
1.3 kilometres, Nature (London) 526, 682 (2015).

[19] J. Tura, R. Augusiak, A. B. Sainz, T. Vértesi, M. Lewenstein,
and A. Acín, Detecting nonlocality in many-body quantum
states, Science 344, 1256 (2014).

[20] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P.
Treutlein, and N. Sangouard, Bell correlations in a Bose-
Einstein condensate, Science 352, 441 (2016).

[21] J. Tura, R. Augusiak, A. B. Sainz, B. Lücke, C. Klempt,
M. Lewenstein, and A. Acín, Nonlocality in many-body
quantum systems detected with two-body correlators, Ann.
Phys. (Berlin) 362, 370 (2015).

[22] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev.
A 47, 5138 (1993).

[23] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A.
Kasevich, Measurement noise 100 times lower than the
quantum-projection limit using entangled atoms, Nature
(London) 529, 505 (2016).

[24] D. J. Wineland, J. J. Bollinger, W.M. Itano, and D. J.
Heinzen, Squeezed atomic states and projection noise in
spectroscopy, Phys. Rev. A 50, 67 (1994).

[25] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.140401 for further
details on conditional squeezing, the nonsymmetric entan-
glement criterion, the calculation of statistical significance,
which includes Refs. [26,27].

[26] G. Vitagliano, I. Apellaniz, M. Kleinmann, B. Lücke,
C. Klempt, and G. Toth, Entanglement and extreme spin
squeezing of unpolarized states, New J. Phys. 19, 013027
(2017).

[27] L. Dellantonio, master’s thesis, University of Copenhagen,
2015.

[28] O. Hosten, R. Krishnakumar, N. J. Engelsen, and M. A.
Kasevich, Quantum phase magnification, Science 352, 1552
(2016).

[29] L. Dellantonio, S. Das, J. Appel, and A. S. Sørensen, Multi-
partite entanglement detection with non symmetric probing,
arXiv:1609.08516.

[30] A. Sørensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Many-
particle entanglement with Bose–Einstein condensates,
Nature (London) 409, 63 (2001).

[31] S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D. N.
Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo,
T. A. Manning, and C. Monroe, Random numbers certified
by Bell’s theorem, Nature (London) 464, 1021 (2010).

[32] T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly,
S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A.
Kasevich, Quantum superposition at the half-metre scale,
Nature (London) 528, 530 (2015).

PRL 118, 140401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 APRIL 2017

140401-5

https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.90.200403
https://doi.org/10.1103/PhysRevLett.91.180401
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1103/PhysRevLett.115.250402
https://doi.org/10.1103/PhysRevLett.112.100403
https://doi.org/10.1126/science.1221856
https://doi.org/10.1038/nphys2444
https://doi.org/10.1038/nphys2444
https://doi.org/10.1038/nature15759
https://doi.org/10.1126/science.1247715
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1038/nature16176
https://doi.org/10.1038/nature16176
https://doi.org/10.1103/PhysRevA.50.67
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.140401
https://doi.org/10.1088/1367-2630/19/1/013027
https://doi.org/10.1088/1367-2630/19/1/013027
https://doi.org/10.1126/science.aaf3397
https://doi.org/10.1126/science.aaf3397
http://arXiv.org/abs/1609.08516
https://doi.org/10.1038/35051038
https://doi.org/10.1038/nature09008
https://doi.org/10.1038/nature16155

