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We introduce a framework to intertwine dynamical processes of different nature, each with its own
distinct network topology, using a multilayer network approach. As an example of collective phenomena
emerging from the interactions of multiple dynamical processes, we study a model where neural dynamics
and nutrient transport are bidirectionally coupled in such a way that the allocation of the transport process at
one layer depends on the degree of synchronization at the other layer, and vice versa. We show numerically,
and we prove analytically, that the multilayer coupling induces a spontaneous explosive synchronization
and a heterogeneous distribution of allocations, otherwise not present in the two systems considered
separately. Our framework can find application to other cases where two or more dynamical processes such
as synchronization, opinion formation, information diffusion, or disease spreading, are interacting with
each other.
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Networks are a powerful way to model and study a wide
variety of complex phenomena [1,2]. In recent years, the
study of collective dynamical processes on complex net-
works has improved our understanding of many complex
systems and shed light on a wide range of physical,
biological, and social phenomena including synchronization
[3], disease spreading [4], transport [5], and cascades [6]. Of
particular interest in theseworks is the interplay between the
structure of the network and its dynamics [7,8]. In fact, the
topology of a network has an effect on the dynamical
processes that take place over the network [9], while some
properties of the dynamics can reveal important information
on the interaction network [10–12]. Understanding the
relations between structure and dynamics can provide a
solid foundation for modeling, predicting, and controlling
dynamical processes in the real world. However, save for a
few notable exceptions [13–16], the majority of the studies
so far have considered a single process on a single network,
ignoring a very important ingredient: often the components
of a complex system interact through two or more dynamics
at the same time, and these dynamics usually depend on each
other in highly nontrivial ways.
In this Letter we propose a general framework for

modeling, through a multiplex network, the coupling of
dynamical processes of the same type (e.g., the spreading
of two coupled diseases) or of different types (for instance a
synchronization dynamics and a diffusion process).
Moreover, we demonstrate with a specific example that
this coupling mechanism can give rise to the emergence of
complex phenomena generated by the interactions between
the different dynamical processes.

The natural way to consider M interacting dynamical
processes taking place over a complex system is to use a
multiplex network with M layers [17–20]. Each layer
contains the same number of nodes, N, and there exists
a one-to-one correspondence between nodes in different
layers, but the topology and the very same nature of the
connections at each layer may be different. We then assign
a different dynamical process to each layer. Considering for
simplicity the caseM ¼ 2, we assume that the dynamics of
the entire system is governed by the following equations:

_xi ¼ Fωi
ðx; A½1�Þ

_yi ¼ Gχiðy; A½2�Þ i ¼ 1; 2;…; N ð1Þ

where x¼fx1;x2;…;xNg∈RN and y ¼ fy1; y2;…; yNg ∈
RN denote the states of the two dynamical processes, while
the topologies of the two layers are encoded in the

adjacency matrices A½1� ¼ fa½1�ij g and A½2� ¼ fa½2�ij g, respec-
tively, such that a½1�ij ¼ 1 (a½2�ij ¼ 1) if a link exists between

nodes i and j in the first (second) layer, and a½1�ij ¼ 0

(a½2�ij ¼ 0) otherwise. The dynamical evolution of the two
network processes is ruled, respectively, by the functions
Fω and Gχ , which depend on the sets of parameters ω and
χ, so that the state xi (yi) of node i at the first (second) layer
is a function of the state x (y) and of the topology A½1� (A½2�)
of the first (second) layer. The key ingredient that connects
the two dynamical processes is provided by the nature of
the correspondence between layers. In fact, the parameter
ωi in function Fωi

at layer 1 is itself a function of
time which depends on the dynamical state yi of node i
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at layer 2, while the parameter χi at layer 2 depends on the
state xi of node i at layer 1. Namely, we have

_ωi ¼ fðωi; yiÞ
_χi ¼ gðχi; xiÞ i ¼ 1; 2;…N ð2Þ

where f and g are two assigned functions.
As a specific example of this type of coupling, and of

the phenomena that can emerge out of it, we study a toy
model of the human brain. Neural systems depend on the
combination of several dynamics, including blood flow,
oxygen exchange, chemical and electrical interactions
among neurons, and remote synchronization of distant
regions [21–24]. Our multiplex network approach here
wants to mimic the interplay between neural activity and
energy transport across brain regions as illustrated in
Fig. 1(a). Neural activity at the level of brain regions is
modeled by the Kuramoto model [25], such that the state
xiðtÞ ∈ ½0; 2πÞ of node i at layer 1 corresponds to the phase
of oscillator i at time t, and the first of Eqs. (1) reads

_xi ¼ ωi þ λ
XN
j¼1

a½1�ij sinðxj − xiÞ; ð3Þ

where ωi corresponds to the natural frequency of the
oscillator i and λ is the coupling strength. The degree
of global synchronization in the neural activity is measured
by the Kuramoto order parameter 0 ≤ r ≤ 1 defined by the
complex number reiψ ¼ ð1=NÞPN

j¼1 e
ixj which represents

the centroid of all the oscillators on the complex plane. The
second dynamical process, namely energy transport at the
second layer, is modeled by a continuous-time random
walk [26]. Specifically, the state yiðtÞ ∈ ½0; 1� at time t
of node i at the transport layer is equal to the fraction
of random walkers at node i at time t, and the second of
Eqs. (1) reads

_yi ¼
1

τy

XN
j¼1

ðπij−δijÞyj¼
1

τy

XN
j¼1

�
a½2�ji χ

α
iP

la
½2�
jl χ

α
l

−δij

�
yj ð4Þ

where πij is the transition probability from node j to node i,
τy is the time scale of the random walker dynamics, and we
have assumed that the random walk is biased on a node
property χi, with a tuneable bias exponent α [27–30]. Notice
that for α > 0 (resp., α < 0) the walkers will preferentially
move towards nodes characterized by high (resp., low)
values of χ, while for α ¼ 0 we recover the standard
unbiased random walk.
To completely define the model, we have to specify how

the neural dynamics and the diffusion of nutrients are
coupled; i.e., we need to assign the functions f and g in
Eqs. (2), respectively, relating the frequency ωi of the
oscillator i at layer 1 to the available resource yi at layer 2,
and the bias property χi of the random walkers at layer 2 to
the oscillator phase xi at layer 1. First, we assume that the
natural frequencies ωi, i ¼ 1; 2;…; N, evolve dynamically
relaxing to values proportional to the fraction of random
walkers at node i in the transport layer:

_ωi ¼
1

τω
½NyiðtÞ − ωi�; ð5Þ

where τω gives the time scale for the relaxation. This choice
is motivated by the fact that firing at a higher frequency
usually requires a correspondingly higher amount of
energy, in the form of oxygen and nutrients carried by
blood [31]. Next, we assume that the quantities χi evolve
according to

_χi ¼
1

τχ
ðsdyni − χiÞ; ð6Þ

where sdyni is the dynamic strength of node i, which
measures the local degree of synchronization of oscillator
i (degree to which i is synchronized with its neighbors) and
is defined as sdyni ¼ ri cosðψ i − xiÞ in terms of the local

synchronization order parameter rieiψ i ¼ P
ja

½1�
ij e

ixj. In this
way, χi relaxes to the dynamic strength of oscillator i with a
time scale τχ , and therefore the random walk described by
the transition probabilities in Eq. (4) is biased towards
(away from) strongly synchronized nodes for positive
(negative) values of α. This choice is supported by
empirical studies confirming the existence of correlations
between the electrical activity of a brain area and the
hematic inflow in the same area, which is responsible for
the transport of energy to the neurons in the form of oxygen
molecules. In particular, it has been suggested that the high
electrical activity of a brain area is normally followed by an
increase in the blood inflow in the same area [32–34].
Summing up, in the model in Eqs. (3)–(6), the firing rate

of a given node i depends on the availability of energy at i
at the transportation layer, and vice versa the abundance of
nutrients at node i depends on the local synchronization of

FIG. 1. Intertwined dynamical processes. (a) An example of a
two-layer multiplex of N ¼ 5 nodes with neural synchronization
dynamics at layer 1 (top), and transport dynamics at layer 2
(bottom). (b) The neural activity is described by the Kuramoto
model in Eq. (3), and the degree of synchronization is measured
by the order parameter r. (c) The transport dynamics is modeled
by biased random walkers moving according to Eq. (4). The two
dynamical processes are bidirectionally coupled, as the natural
frequencies of the oscillators at layer 1 depend on the distribution
of random walkers at layer 2 and, at the same time, the random
walkers are biased on the degree of synchronization of the nodes
at layer 1, as described in Eqs. (5) and (6).
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oscillator i at the neural dynamics layer. Our model has two
control parameters, λ and α, that we can change to tune,
respectively, the coupling between oscillators at layer 1 and
the strength of the bias in the random walk at layer 2. To
illustrate the effects of intertwining the two dynamical
processes, we consider a multiplex network with N ¼ 1000
nodeswhose synchronization layer is a scale-free (SF) graph
[35] with degree distribution Pðk½1�Þ ∝ ðk½1�Þ−γ with γ ¼ 3

above a minimum degree k½1�0 , and whose transport layer
is a Erdős-Rényi (ER) random graph [36] with link prob-
ability p. The average degrees of the two layers are thus

given by hk½1�i ¼ ðγ − 1=γ − 2Þk½1�0 and hk½2�i ¼ pðN − 1Þ.
We choose a SF graph for the synchronization layer given
the prevalence of such topologies in real neural systems [37],
and we have considered the limits τy, τω, τχ → 0þ corre-
sponding to instantaneous relaxation, meaning the relaxa-
tion dynamics of Eqs. (4), (5), and (6) is faster compared to
the dynamics of the oscillators. These fast relaxation time
scales have been chosen for simplicity, and we note that the
phenomenawe present here persist for finite values of τy, τω,
and τχ , as we show in the Supplemental Material [38].
We simulated the model on networks with hk½1�i ¼

hk½2�i ¼ 10, by adiabatically increasing and then decreasing
the coupling strength λ at fixed values of the bias parameter
α. In Fig. 2(a) we report the synchronization profiles r vs λ
for α ¼ 0.4, 1.0, and 1.6 (blue circles, red triangles, and
green squares, respectively) at layer 1. Notice that for α ¼
0.4 we have the typical continuous phase transition of the
Kuramoto model. Conversely, for α ¼ 1.0 and 1.6 we
observe the emergence of a switchlike explosive synchro-
nization [39] and a bistability in the form of a hysteresis
loop (in the forward and backward branches of the
profiles). In Fig. 2(b) we focus on layer 2, and we plot
the distribution PðyiÞ of the steady-state random walker
occupation probabilities yi for α ¼ 1, corresponding,
respectively, to λ ¼ 0.1 when the system at layer 1 is in
an incoherent state (top, blue), and to λ ¼ 0.4 when the
system at layer 2 is synchronized (bottom, red). While the

values of yi are relatively homogeneous in the incoherent
state and span less than a decade, in the synchronized state
the distribution is heterogeneous and spanning several
decades. Finally, in Fig. 2(c) we explore the ðα; λÞ param-
eter space in more detail, plotting the value of r at layer 1 as
a function of the two control parameters of the model. The
bistable region which emerges at α ≈ 0.7 and widens by
increasing α is reported in white. We note that this behavior
persists under a wide range of network topologies, provided
that the synchronization layer is sufficiently heterogeneous,
as shown in the Supplemental Material [38].
Our results indicate that the intertwined nature of

diffusion process and synchronization dynamics gives rise
to the emergence of phenomena not present if the two
dynamics were not coupled. Namely, in the transport layer,
we observe a transition from a homogeneous to a hetero-
geneous distribution of the random walkers throughout the
network, according to whether the oscillators at the other
layer are incoherent or synchronized. Concurrently, when
the random walkers are biased sufficiently strongly towards
regions that are more synchronized, the heterogenous
distribution of random walkers fosters the emergence of
switchlike explosive synchronization [39] in the neural
dynamics layer. The resulting phase diagram exhibits three
phases (incoherent, bistable, and synchronised) and a
tricritical point. It is noticeable that explosive synchroniza-
tion appears naturally in our model due to the intertwined
dynamics of the two processes, and it does not require
ad hoc externally imposed correlations between the oscil-
lator frequencies and the topology of the interaction net-
work, as those necessary instead in a single layer network
with a single dynamics [39,40].
We nowdemonstrate that, despite the inherent intricacy of

the model, its dynamical behavior can be understood
analytically. In particular, we search for conditions such
that random walker probabilities and local order parameters
are in a stationary state, yi ¼ y�i and ri ¼ r�i . A steady-state
analysis can then be carried out for both the transport
and synchronization dynamics, which we detail in the

(a) (b) (c)

FIG. 2. Spontaneous explosive synchronization induced by the multiplex coupling of the two processes. (a) Level of synchronization r
vs λ at layer 1 for bias exponents α ¼ 0.4, 1.0, and 1.6 (blue, red, and green, respectively). (b) Distribution PðyiÞ of steady-state random
walker fractions yi at layer 2 for α ¼ 1.0, when the oscillators at layer 1 are incoherent (λ ¼ 0.1, top, blue) and synchronized (λ ¼ 0.4
bottom, red). (c) Synchronization phase diagram showing r as a function of coupling λ and bias exponent α. The bistable region is
colored in white. Networks are of size N ¼ 1000 with γ ¼ 3 and hk½1�i ¼ hk½2�i ¼ 10.
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Supplemental Material [38]. In particular, we find that the
fraction of random walkers y�i depends on whether the
synchronization dynamics is incoherent or synchronized,
namely,

y�i ∝

(
k½2�i if r ≈ 0

ðk½1�i Þαk½2�i hðk½1�Þαi if r ≈ 1.
ð7Þ

Also, the global order parameter r can be written implicitly
in terms of the collective frequency Ω ¼ hωi and the joint
degree-frequency distribution Pðk;ωÞ:

r¼ 1

hk½1�i
ZZ

jω−Ωj≤λrk½1�
Pðk½1�;ωÞk½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
ω−Ω
λrk½1�

�
2

s
dωdk½1�;

ð8Þ

which depends on the topologies of both layers since ωi ¼
Nyi in the steady state. Figure 3 shows that our analytical
results are in good agreement with the numerical simula-
tions. In Figs. 3(a) and 3(b) we plot the observed fraction yi
of random walkers at the steady state vs the predictions of
Eq. (7), respectively, for the incoherent and synchronized
state. Dashed black lines are plotted to guide the eye. In
Fig. 3(c) we report the synchronization phase diagram
obtained fromEq. (8). A comparisonwith the phase diagram
in Fig. 2(c) indicates that our theory is able to accurately
reproduce the collective phenomena emerging from the
interactions of the two dynamical processes that we have
observed in our numerical simulations.
The specific example of intertwined synchronization and

transport dynamics studied here shows that interesting
collecting behaviors can appear when we couple two
dynamical processes taking place on the same set of
nodes. Namely, we have found that the distribution of
random walkers in the transport network changes from
homogeneous to heterogeneous according to whether the
synchronization dynamics is incoherent or synchronized,
and this result is unexpected since for the topology of
the transport network we have on purpose chosen a

homogenous graph. At the same time, the heterogeneous
distribution of walkers is responsible for the emergence of
explosive synchronization, and the appearance of a bistable
phase and of a tricritical point in the neural network layer.
Importantly, here, explosive synchronization spontane-
ously emerges from the interactions of the two dynamical
processes, without any externally imposed assumptions,
necessary instead in networks where the Kuramoto model
is not coupled to other dynamical systems [39,40].
The switchlike transition we have found in our model

closely mirrors that displayed by the human brain [23],
which has the ability to very quickly switch between resting
state activity (i.e., the background activity of a brainwhen no
particular conscious task is performed) and complex intel-
lectual or motor tasks [41], and thus requires a fast and
flexible mechanism to induce a sudden and massive syn-
chronization. The choice of this specific model was moti-
vated by the important role that synchronization and
transport play in a wide range of natural and man-made
systems [42–45] and by the various bistabilities empirically
observed in physics, biology, and neuroscience [23,46,47].
To date, several studies have investigated how a single type
of dynamics evolves on a multilayer network [48–51].
However, the framework we have proposed here, based
on the use of multiplex networks to mutually couple
dynamics of different nature, is very general and versatile.
We believe that further studies of other intertwined dynami-
cal processes will uncover other novel phenomena induced
by multiplex coupling, and will eventually result in a more
thorough understanding of the relation between the structure
and the dynamics of multidimensional complex systems.
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(a) (b) (c)

FIG. 3. Analytical approach to explain the observed collective phenomena. Fraction yi of random walkers at node i vs k½2�i for an

incoherent state (a), and vs ðk½1�i Þαk½2�i hðk½1�Þαi for a synchronized state (b). (c) Analytically obtained synchronization phase diagram
showing r as a function of λ and α. Networks are of size N ¼ 1000 with γ ¼ 3 and hk½1�i ¼ hk½2�i ¼ 10 as in the numerical simulations
shown in Fig. 2.
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