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Excitable systems display memory, but how memory affects the excitation dynamics of such systems
remains to be elucidated. Here we use computer simulation of cardiac action potential models to
demonstrate that memory can cause dynamical instabilities that result in complex excitation dynamics and
chaos. We develop an iterated map model that correctly describes these dynamics and show that memory
converts a monotonic first return map of action potential duration into a nonmonotonic one, resulting in a
period-doubling bifurcation route to chaos.
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Memory has been widely studied not only in the brain
[1], but also in many other systems [2–4] in physics,
chemistry, and biology. When a system exhibits memory,
its dynamical behavior depends on history, such as hyste-
resis in ferromagnets. In electrically excitable cells such as
neurons and cardiomyocytes, the excitation dynamics are
regulated by complex networks consisting of many types of
ion channels and signaling pathways with multiple time
scales, and therefore, these systems often exhibit short-term
memory. For example, electrical bursting in neurons [5–8]
and pancreatic β-cells [5] is caused by fast and slow time
scales, and the slow time scales may give rise to short-term
memory. In cardiac cells, the fast and slow time scales can
give rise to early afterdepolarizations (EADs) that arise
from the same Hopf-homoclinic bifurcation as in neurons
and β-cells [9]. Complex electrical excitation dynamics are
common in neural [10–13] and cardiac [14–21] cells, and
low-dimensional iterated maps of action potential (AP)
properties have been used to reveal the underlying mech-
anisms. These iterated maps do well when the memory
effect is absent or small. However, in the presence of
memory, low-dimensional maps may be insufficient, and
higher-dimensional maps are usually needed to take into
account the memory effects [22–24]. The effects of
memory on cardiac alternans have been investigated in
many previous studies [22–32], which generally have
shown that memory suppresses alternans. In this study,
we show that memory can potentiate dynamical instabilities
to result in chaos and other complex excitation patterns
in cardiac AP models, which can be well captured by an
iterated map model that incorporates memory.
Simulations were carried out in a single cell with the

equation of voltage (V) as

Cm
dV
dt

¼ −Iion þ Isti; ð1Þ

whereCm ¼ 1 μF=cm2 is the membrane capacitance, Iion is
the total ionic current density, and Isti is the stimulus current
density, which is a 0.5 ms square pulse of amplitude
80 μA=cm2. Iion¼ INaþIsiþIKþIK1þIKpþIbþIto;f,
in which the formulations of the currents are from the
1991 Luo and Rudy (LR1) model [33] except that Ito;f ¼
gto;fxto;fyto;fðV − EKÞ is taken from the model by Mahajan
et al. [34]. Ito;f is the fast component of Ito, which activates
and inactivates quickly. gto;f is the maximum conductance,
and xto;f and yto;f are the activation and inactivation gating
variables. The presence of Ito causes the so-called spike-
and-dome morphology [Fig. 1(a)] and is associated with
Brugada syndrome [35], a diseased condition with a high
risk of sudden death. It has also been shown in previous
simulation studies [36–39] and experiments [40] that Ito
can promote alternans and complex AP duration (APD)
dynamics, but the dynamical mechanisms remain to be
elucidated, which are revealed in this study.
We calculated the S1S2 APD restitution curves in our

simulations by pacing the cell periodically for several S1
beats and then applying an S2 beat with a certain S1S2
coupling interval [Fig. 1(b)]. Unlike the dynamic APD
restitution used in many studies, the S1S2 APD restitution
curve can be explicitly defined mathematically as

anþ1 ¼ fðdnÞ; ð2Þ
where anþ1 is the APD of the S2 beat and dn is the diastolic
interval (DI) preceding the AP. For a periodically driven
cell with period T, since an þ dn ¼ mT (m ¼ 1; 2; 3;…),
Eq. (2) can be rewritten into an iterated map as

anþ1 ¼ fðmT − anÞ; ð3Þ
where mT is the actual excitation period. For example,
m ¼ 1 means every stimulus gives rise to an AP (1∶1
capture), m ¼ 2 means every two stimuli result in an AP
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(2:1 failure), and so on. Equation (3) has been widely
used to investigate APD dynamics under periodic stimu-
lation [16–18,41–43].
Figure 1(c) shows S1S2 APD restitution curves for two

S1 pacing periods in the original LR1 model in the absence
of Ito. The APD restitution curve shifts slightly to the right
for the shorter S1 pacing period, indicating that there is a
very small memory effect. Figure 1(d) shows a bifurcation
diagram of the LR1 model by plotting the APD against the
pacing period T. 2∶1 and 3∶1 stimulation failure occurs,
followed by chaos as T decreases. Chaos occurs only when
T is very short (<100 ms). Figure 1(e) shows the bifurca-
tion diagram obtained using Eq. (3) with the S1S2 APD
restitution curve (black) in Fig. 1(c). The resulting bifur-
cation diagram is almost identical to the one from the LR1
model in Fig. 1(d), indicating that the S1S2 APD restitution
curve combined with Eq. (3) can well describe the complex
dynamics of the AP model.
We then added Ito to the LR1 model and changed several

other parameters (see Fig. 1’s legend). We shifted the
steady-state curve of yto;f by 8 mV to more positive
voltages. These changes were done to avoid nonmonotonic
APD restitution curves and stimulation failure at fast
pacing and thus to avoid the confounding effects of these
properties on dynamical instabilities and chaos [43].
Adding Ito causes the APD restitution curve to be sigmoi-
dal and sensitively depend on the S1 pacing period

[Fig. 1(f)], indicative of a very large memory effect. The
APD restitution curve shifts to the left for the shorter S1
pacing period, a different phenomenon from that in the
original LR1 model [Fig. 1(c)] without Ito. Figure 1(g)
shows a bifurcation diagram from the AP model using this
parameter set, demonstrating a period-doubling route to
chaos and an inverse period-doubling route to exit chaos as
T decreases. Alternans and chaos occur at much slower
pacing rates (T ∼ 900 ms), and no stimulation failure
occurs (APD is always shorter than T). In contrast, using
Eq. (3) with the two APD restitution curves, the bifurcation
diagrams exhibit only alternans [Fig. 1(h)] since the
maximum slope of the APD restitution curve is greater
than 1 [43]. This is because the APD restitution is a
sigmoidal function. Therefore, without taking into account
the memory effect, the simple iterated map based on the
S1S2 APD restitution curve cannot capture the complex
dynamics of the AP model, which is not surprising.
To analyze the mechanisms of the complex excitation

dynamics induced by memory, we developed a new iterated
map model that incorporates the memory effect. In the
LR1 model, the slowly changing variable is the gating
variable x of IK , which recovers slowly during the DI phase
[Fig. 2(a)]. Since in this model all other variables recover
quickly after repolarization except x, we assume that the
APD depends on the value of x at the beginning of the AP
[labeled as xn, Fig. 2(a)] as well as the DI, i.e.,

FIG. 1. (a) APmorphology change caused by Ito. (b) Voltage trace illustrating the S1S2 pacing protocol. (c) APD restitution curves of the
original LR1model for twoS1pacingperiods (TS1S1). (d)Bifurcation diagram (APDversusT) from theLR1model. (e)Bifurcation diagrams
using Eq. (3) and the APD restitution curves in (c). (f) APD restitution curves for two S1 pacing periods (TS1S1) in the presence of Ito
(gto;f ¼ 0.21 mS=cm2).Other parameters changed from the original LR1model areGsi ¼ 0.1035 mS=cm2,GK1 ¼ 1.33034 mS=cm2, and
τx → 5τx. The slope is greater than 1 betweenDI ¼ 198 and 256ms for the red curve and betweenDI ¼ 495 and 555ms for the black curve.
(g) Bifurcation diagram of the AP model. (h) Bifurcation diagrams using Eq. (3) with the two APD restitution curves in (f), respectively.
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anþ1 ¼ gðxnþ1; dnÞ; ð4Þ

in which we separate the APD dependence on the recovery
of x and on the recovery of all other gating variables
(lumped together in DI). To calculate the x-dependence of
the APD in the LR1 model [i.e., function gðxnÞ], after
pacing for several beats we set different initial x values at
the beginning of the AP (xn) and measured the resulting
APD (an). Figure 2(b) shows the APD dependence on xn
for different values of gto;f using a fixed DI ¼ 500 ms.
As gto;f increases, the x-dependence of APD becomes a
steeper sigmoidal function and is left-shifted.
The next step is to derive an iterated map equation for xn.

In the AP model, the gating variable x is described by

dx
dt

¼ ½x∞ðVÞ − x�=τxðVÞ: ð5Þ

Assuming a square voltage clamp [Fig. 2(a)] is applied
to Eq. (5), one can solve Eq. (5) exactly to obtain the
dependence of xnþ1 on xn as

xnþ1 ¼ ½xa − ðxa − xnÞe−ðan=τaÞ�e−ðdn=τdÞ ¼ wðxn; anÞ; ð6Þ

where we assume x∞ðVrÞ ¼ 0 and define x∞ðVpÞ ¼ xa,
τxðVrÞ ¼ τd, and τxðVpÞ ¼ τa. Vp is the constant voltage
during the square pulse and Vr is the resting potential. In
the original LR1 model, xa ∼ 0.5 for Vp ¼ 0, τa ∼ 600 ms,
and τd ∼ 200 ms. Since we made the parameter change
τx → 5τx, as in the simulation in Figs. 1(f)–1(h), we use
τa ¼ 3000 ms and τd ¼ 1000 ms for the iterated map
results shown in Figs. 2 and 3. As all other ionic currents
recover quickly in the LR1 model, for simplicity, we ignore

their contributions to restitution in the present study, and
simply use

anþ1 ¼ gðxnþ1Þ: ð7Þ
From Eq. (7), we can express xn ¼ g−1ðanÞ. Inserting it

into Eq. (6), we have xnþ1 ¼ w½g−1ðanÞ; an�. Therefore,
one can rewrite Eq. (7) into a first return map as

anþ1 ¼ gfw½g−1ðanÞ; an�g ¼ GðanÞ: ð8Þ
Using Eqs. (6) and (7) [or Eq. (8)] with the x-dependence

curve of APD for the same gto;f as in Fig. 1(g), we obtained
a bifurcation diagram [Fig. 2(c)] that is nearly identical to
the one from the numerical simulation of the AP model
[compare Fig. 2(c) with Fig. 1(g)]. Therefore, by adding
memory into the iterated map model, one can accurately
capture the complex excitation dynamics of the AP model,
demonstrating that memory is key to the induction of the
complex dynamics, including chaos.
To further theoretically analyze the mechanism of

memory-induced chaos, we used a Hill function for g in
Eq. (7) as

FIG. 2. (a) Black traces are V and x. The red dashed line is the
voltage clamp trace for deriving Eq. (6). (b) The x-dependence
curves of APD for gto;f ¼ 0 (black), 0.1 (red), 0.21 (blue), and 0.3
(green) mS=cm2. DI ¼ 500 ms. (c) Bifurcation diagram obtained
using Eq. (8) [or Eqs. (6) and (7)] with the x-dependence curve of
APD for gto;f ¼ 0.21 mS=cm2 [the blue curve in (b)].

FIG. 3. (a) G versus an for h ¼ 40 (black), 25 (magenta), and
10 (cyan). T ¼ 400 ms. (b)G versus an for T ¼ 200 (cyan), 400
(magenta), 600 (black), and 800 (olive) ms. (c) A first return
map of the AP model in a chaotic regime [obtained from a
chaotic trace at T ¼ 508 ms; see Fig. 1(g)]. (d) A bifurcation
diagram for the default set of parameters. (e) Phase diagram in
the h-T space. (f) Phase diagram in the τd-T space. Except
for panel (c), results in all the panels were obtained using
Eq. (8) with the theoretical function in Eq. (9). P2 ¼ period-2,
P3 ¼ period-3, and P4 ¼ period-4.
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gðxnþ1Þ ¼ amin þ
amax − amin

1þ ðxnþ1

kd
Þh ; ð9Þ

where h is the Hill coefficient, and amin and amax are the
minimum and maximum APDs, respectively. We choose
the following default set of parameters for the iterated
map simulations in Fig. 3: h ¼ 25, kd ¼ 0.07,
amax ¼ 350 ms, and amin ¼ 50 ms. From Eq. (9), we have
xn ¼ g−1ðanÞ ¼ kd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðamax − anÞ=ðan − aminÞh
p

, and so
GðanÞ in Eq. (8) is an explicit function of an. In Figs. 3(a)
and 3(b), we plot G as a function of an under different
conditions. Differing from function f in Eq. (3), the
function G in Eq. (8) is no longer a sigmoidal function
but a nonmonotonic function. Increasing h steepens the
slope of G at the fixed point, causing the fixed point to be
unstable. For very fast pacing or slow pacing, the slope ofG
at the fixed point is reduced, indicating that the fixed point
is unstable for a certain range of T. In Fig. 3(c) we show a
first return map from the AP model in a chaotic regime,
showing that the first return map is nonmonotonic, very
similar to the theoretical first return map in Figs. 3(a)
and 3(b). Figure 3(d) is a bifurcation diagram obtained
using Eq. (8), showing a period-doubling bifurcation
route to chaos and an inverse period-doubling route out
of chaos, a similar bifurcation structure to Figs. 1(g) or 2(c).
Figure 3(e) shows a phase diagram in h-T space showing
that increasing h promotes instabilities and chaos.
Figure 3(f) shows a phase diagram in τd-T space with a
fixed τa, showing that increasing τd increases the unstable
range of T and causes the instability to occur at very long T.
Memory-induced chaos is not limited to the LR1 model

but a general phenomenon in cardiac excitation. We carried
out simulations using the human ventricular cell model by
ten Tusscher et al. [44]. The simulation results are shown in
Supplemental Material Fig. S1 [45]. When the original Ito
(both fast and slow) was removed from the model, no
instabilities occurred. When the same Ito model used for
the LR1 model above was added, chaos and complex APD
dynamics occurred [Fig. S1(c)]. The first return map of
APD [Fig. S1(d)] is similar to the first return map shown in
Fig. 3(c), indicating the same mechanism of chaos. By
further analysis, we found that unlike the LR1 model, the
memory in the ten Tusscher et al. model is not caused by
the recovery of potassium currents but rather by accumu-
lation of intracellular ions. However, a simple iterated map
like Eq. (6) is no longer feasible since, for example, sodium
accumulation affects intracellular calcium, thus requiring a
more complex iterated map model to accurately model the
dynamics [46]. We are developing a detailed iterated map
model that will incorporate thememory effect caused by ionic
accumulation to unravel the underlying complex dynamics.
Short-term memory can also potentiate complex dynam-

ics and chaos in the setting of long QT syndrome [47].
Long QT syndrome is a cardiac disease with a high risk of
syncope and sudden death, caused by genetic mutations or
drugs that either decrease outward currents or increase

inward currents to prolong APD [47]. One of the conse-
quences is the occurrence of early afterdepolarizations
(EADs) in the AP [Fig. 4(a)], which can lead to complex
excitation dynamics [9,48]. Figure 4(b) is a bifurcation
diagram from a simulation of the AP model, showing
complex excitation patterns and chaos as the pacing period
T increases. We also calculated the S1S2 APD restitution
curves for two different S1 pacing periods. The S1S2 APD
restitution curves exhibit a staircase-type increase against
DI [Fig. 4(c)], with each higher step corresponding to an
extra EAD in the AP. Faster S1 pacing causes the APD
restitution curve to shift to the right. The bifurcation
diagram [Fig. 4(d)] obtained using Eq. (3) and the APD
restitution curves shows a sudden transition to APD
alternans, which completely misses the bifurcation
sequence of the AP model. We then used the same method
as before to measure the x-dependence curve of APD
[Fig. 4(e)]. Using the new iterated map model Eq. (8) [or
Eqs. (6) and (7)], the bifurcation diagram [Fig. 4(f)] shows
almost exactly the same bifurcation sequence as in the AP
model. Bifurcation diagrams in wider ranges of T show that
the iterated map model Eq. (8) can still capture the
bifurcation sequences of the AP model (Supplemental
Material Fig. S2 [45]). These results indicate that memory
plays an important role in generating the complex
EAD-related excitation dynamics.

FIG. 4. (a) APs showing an EAD. All parameters are from the
original LR1 model, except τx → 10τx. (b) Bifurcation diagram
from the LR1 model. (c) S1S2 APD restitution curves for two
different S1 pacing periods (TS1S1). (d) Bifurcation diagram
obtained by iterating Eq. (3) with the S1S2 APD restitution
curve (black) in (c). (e) APD versus xn for DI ¼ 1000 ms.
(f) Bifurcation diagram obtained by iterating Eq. (8) [or Eqs. (6)
and (7)] with the x-dependence curve of APD in (e).
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In this study, we show that short-term memory can
induce or potentiate complex excitation dynamics, includ-
ing chaos, under certain cardiac disease conditions. The
new iterated map model that incorporates memory properly
can well describe the complex dynamics and unravel the
underlying mechanisms, which may provide further under-
standing of memory and chaos in the genesis and main-
tenance of cardiac arrhythmias [48,49]. These mechanistic
insights may not only be limited to complex excitation
dynamics in cardiac myocytes but also to those in other
electrically excitable cells. For example, the bursting
dynamics in neurons [10–13] and pancreatic β-cells [5]
are irregular, which can result from either random ion
channel openings or dynamical chaos. Since the bursting
dynamics are also governed by fast-slow dynamics [5–9]
similar to the EAD dynamics in cardiac myocytes, the same
mechanism of memory-induced chaos may be applicable to
irregular bursting dynamics in these cases.
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