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A fully reconfigurable two-dimensional (2D) rocking ratchet system created with holographic optical
micromanipulation is presented. We can generate optical potentials with the geometry of any Bravais lattice
in 2D and introduce a spatial asymmetry with arbitrary orientation. Nontrivial directed transport of
Brownian particles along different directions is demonstrated numerically and experimentally, including on
axis, perpendicular, and oblique with respect to an unbiased ac driving. The most important aspect to define
the current direction is shown to be the asymmetry and not the driving orientation, and yet we show a
system in which the asymmetry orientation of each potential well does not coincide with the transport
direction, suggesting an additional symmetry breaking as a result of a coupling with the lattice
configuration. Our experimental device, due to its versatility, opens up a new range of possibilities in
the study of nonequilibrium dynamics at the microscopic level.
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Initially motivated by the understanding of biological
engines and the design of artificial nanodevices, the
emergence of directed transport in the presence of unbiased
external forces due to a spatiotemporal symmetry breaking
has become a major research topic in different scientific
areas [1]. This intriguing phenomenon, known as the
ratchet effect, lies at the heart of nonequilibrium thermo-
dynamics at the microscopic scale. This model can explain
the functioning of a number of systems in nature, such as
molecular motors [2–4] or protein translocation processes
[5]. Additionally, schemes based on this mechanism have
been implemented to sort biomolecules [6] and inorganic
microparticles [7], and rectify the motion of cold atoms in
optical lattices [8,9] and vortices in superconductors [10],
among others. The rich dynamics arising in ratchets
becomes evident from the diverse phenomena that can
be observed even in the simplest cases of one-dimensional
(1D) systems, such as bidirectional transport depending on
size, chaotic behavior, and current reversals [11–15]. This
is due to the delicate interplay among a whole set of
parameters, encompassing the structure of a spatial poten-
tial, the modulation of an external driving, the strength of
thermal noise, and the properties of the particles. Studies on
the influence of these aspects have paved the way to
broaden our understanding of transport processes at the
micro- and nanoscales, but this area is far from complete.
Naturally, a degree of complexity and versatility is added

in two-dimensional (2D) systems, which become very
important in the context of electronic transport in 2D
crystals like graphene [16] and semiconductor artificial
nanomaterials [17], for example. Among the studies of 2D
ratchets, an explored path has been the use of symmetric

spatial potentials either with a temporally asymmetric drive
[18–20] or with an induced symmetry breaking due to a
synchronization and phase coupling of two ac signals: a
flashing potential and a symmetric rocking driving [21,22].
Another common approach has been to tailor microfabriced
substrates with posts or wells, introducing a space asym-
metry [23–26]. Motion rectification in these microstruc-
tured potentials, integrated in microfluidic schemes, as well
as electrophoretic, superconductor, or solid-state devices,
has been obtained, for example, for cells and bioparticles
[27,28] and magnetic flux quanta in superconductors [29].
In most of these devices, however, there is a static external
force to induce transport along one direction, while the
ratchet rectifies the transverse motion. There are few
examples of ratchets having periodicity and dynamics in
2D involving only unbiased external (ac) forces to drive the
system out of equilibrium to produce transport [25,26].
In contrast with previous work, in this Letter we present

a fully reconfigurable 2D ratchet formed with a static
asymmetric potential and an unbiased driving generating a
rocking mechanism. Our experimental device, based on
holographic optical micromanipulation, allows us to create
any of the five Bravais lattices in 2D and introduce a spatial
asymmetry of the individual potential wells along an
arbitrary direction. We demonstrate, numerically and
experimentally, controlled transport of Brownian particles
in three different schemes of substrate potentials, where the
ratcheting arises from the 2D nature of the potential.
Motion rectification is obtained along the driving direction
(on-axis current), along the transverse direction (lateral
current), and also, for the first time to our knowledge, along
an oblique direction, without any additional external force.
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Well beyond a novel micromanipulation device, our system
constitutes an ideal experimental model to explore the
physics of 2D ratchets.
In the overdamped regime, the dynamics of a Brownian

particle in a 2D rocking ratchet is described by

_~rðtÞ ¼ −
1

γ
∇Uð~rðtÞÞ þ 1

γ
~FðtÞ þ ~ξðtÞ; ð1Þ

where ~rðtÞ ¼ ½xðtÞ; yðtÞ�, γ is an effective drag coefficient,

and ~ξðtÞ represents the thermal noise, having a correlation
function hξiðtÞξjðt0Þi ¼ 2Dδijδðt − t0Þ with i, j ¼ x, y.
D ¼ kBT=γ is the diffusion coefficient in the proximity
of the surface [30], different from that of a particle far from
the surface D0, kB is the Boltzman constant and T the
ambient temperature. The external driving is set along the x

direction, ~FðtÞ ¼ ½FðtÞ; 0�. The time modulation is given
by [13,15]: FðtÞ ¼ −γvðtÞ, with vðtþ τÞ ¼ vðtÞ, where
vðtÞ ¼ v0 if 0 ≤ t < τ1; vðtÞ ¼ 0 if τ1 ≤ t < τ1 þ τ0;
vðtÞ ¼ −v0 if τ1 þ τ0 ≤ t < τ − τ0; and vðtÞ ¼ 0 if
τ − τ0 ≤ t < τ, v0 being a constant speed. The parameters
τ0 and τ1, referred to as the waiting time and the activation
time, respectively, satisfy τ ¼ 2ðτ0 þ τ1Þ.
The potential is constituted by a collection of Gaussian-

shaped wells of width σ distributed over a lattice defined by

the vectors ~a ¼ ðLx; 0Þ and ~b ¼ ðbx; byÞ, illustrated in
Fig. 1, and an identical clone lattice of wells with a smaller
depth by a factor 0 < Q < 1, which is shifted with respect

to the main lattice to a position defined by ~δ ¼ ðδx; δyÞ. It
can be expressed as

Uð~rÞ ¼ −U0

X

m;n

½um;nðx; yÞ þQum;nðx − δx; y − δyÞ�; ð2Þ

where um;nðx; yÞ ¼ e−½ð~r−m~a−n~bÞ2=σ2�. U0 denotes the depth
of each potential well of the main lattice, and the asym-

metry of the potential depends on Q and ~δ, which are
related with experimental parameters as described in [30].
The dynamics of the particle is characterized by the

current ~J ¼ limt→∞h~rðtÞi=t. However, if the waiting time
τ0 is long enough, the particle can relax to an equilibrium
position after each activation semicycle τ1 [13,15].
Under these conditions, we define the dimensionless

normalized current as ~j¼ðjx;jyÞ≈ ð1=LxÞ½~rðqτÞ=q�, where
q ¼ 1; 2; 3;…; this represents the number of periods the
particle moves per unit cycle. The numerical calculations
were done with the stochastic Runge-Kutta algorithm [33].
The experimental setup is illustrated in Fig. 1. A linearly

polarized laser beam (532 nm wavelength) is reflected on a
SLM displaying a computer generated hologram, which
creates a pattern of multiple light spots of approximately
equal intensity distributed over a 2D lattice. A Mach-
Zehnder device splits the light beam into two orthogonally

polarized components. Their relative intensities are con-
trolled with a HWP before the polarizing beam splitter
PBS1. The tilt of beam splitter PBS2 is controlled with
piezo actuators to shift the reflected pattern, corresponding
to the clone, with respect to the transmitted one. Both
copropagating beams are projected onto the back aperture
of a 10× microscope objective (MO1). The dichroic mirror
DM1 reflects the laser wavelength while letting pass the
illumination of the imaging system. The desired intensity
distribution forms at the back focal plane of MO1. With the
imaging system we monitored the light pattern and the
particles simultaneously.
We used monodisperse polystyrene microspheres with

diameter d ¼ 1.99 μm immersed in water, with non-neg-
ligible Brownian motion at room temperature. The rocking
mechanism is introduced by moving the sample cell side-
ways along the x direction using a piezo stage driven with
velocity modulation vðtÞ, defined above. A plot of the
displacement of the stage versus time, XðtÞ, is shown in
Fig. 1. The activation time, τ1, and the amplitude of the
periodic displacement,Λ, are the control parameters. Hence
the maximum driving force on a particle is jFmaxj ¼ γv0,
where v0 ¼ Λ=τ1.
We studied three schemes of 2D rocking ratchets. In all

the experiments τ0¼2s, and the values Q ¼ 0.465� 0.011

and j~δj ¼ δ ¼ ð1.42� 0.05Þ μm were chosen according to
the calculations, such that each potential well exhibits a
maximum spatial asymmetry while its depth is enough to
prevent diffusion of a trapped particle [30]. Therefore,
particles mainly diffuse when they are in the intertraps
space. In our simulations, we used an ensemble of 500
particles to determine ~j ¼ ðjx; jyÞ vs Λ for different values
of the relative diffusion coefficient D=D0, allowing us to
compare the experimental results with the deterministic

FIG. 1. Experimental setup: spatial light modulator (SLM),
lenses (L), spatial filter (SF), half-wave plate (HWP), polarizing
beam splitters (PBS), mirrors (M), dichroic mirrors (DM),
microscope objectives (MO), attenuation filters (F), and cameras
(CCD). The upper inset shows the primitive vectors of the main

lattice ~a and ~b, and the position of the clone lattice defined by ~δ.
The inset in the middle illustrates the displacement of the piezo-
stage XðtÞ.
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limit, D → 0, and elucidate the role of noise strength.
Experimentally, the positions of dozens of particles were
tracked as a function of time from recorded videos, which
are exemplified in [34] for the cases illustrated in the
images of Figs. 2 to 4. The value of the activation time τ1
was adjusted as Λ was varied, so as to keep jFmaxj constant
for each set of experiments.
I. Axial current. In the first scheme (Fig. 2), we have a

centered rectangular lattice with a spatial asymmetry along

x, described by ~a=Lx ¼ ð1; 0Þ and ~b=Lx ¼ ð0.5; 0.15Þ,
with Lx ¼ 14.8 μm, and ~δ ¼ ðδ; 0Þ. The driving velocity
is v0 ¼ 21 μm=s, which allows the particles to escape from
the wells in one direction (right), but not in the opposite
(left). Figure 2(c) shows the numerical results for jx (blue)
and jy (red) vs Λ for D=D0 ¼ 0, 0.41, and 1. The shadows
around the curves for D=D0 ¼ 0.41, which correspond to
our experiments [30], represent the standard deviation of
the simulation. We also plot experimental results (markers).
Figures 2(a) and 2(b) illustrate the paths of several particles
for two cases, departing from their initial position (colored
circles on the left).
Although the asymmetry of the potential and the driving

are oriented along x, and therefore jy ¼ 0, the dynamics of
the system cannot, in general, be reduced to a 1D system
due to diffusion. This is seen in Fig. 2(a), which illustrates
the role of diffusion and unstable equilibrium positions,
such as the point P indicated in the inset of Fig. 2(c).
Namely, when the displacement of the particle is
Δx ∼ Lx=2, it ends up equally close to a pair of wells
along y. Diffusion during the waiting time leads the bead to
fall into one of these wells with equal probability. The result

is a net current jx ¼ 1=2, while the ensemble of particles
spreads out laterally. In contrast, the current is null in the
deterministic limit D=D0 ¼ 0 (dash-dotted curve) for this
case. Even the tiniest thermal noise kicks the particle out
from the unstable equilibrium position, onsetting the
rectified motion. In Fig. 2(b) Δx≃ Lx, therefore, the
particle reaches the next trap along x with negligible role
of diffusion, resulting in a practically deterministic 1D
motion. Accordingly, when D=D0 ¼ 0, jx is a sharply
stepped function with unitary step height, whereas for
D=D0 ≠ 0 the curves exhibit twice the number of smoothed
steps of height 1=2 starting at smaller values of Λ.
II. Lateral current. In this case, we have a centered

rectangular lattice but with a spatial asymmetry along y, so
the particle is equally able to escape when the driving
operates to the left or to the right. The parameters are

~a=Lx¼ð1;0Þ, ~b=Lx¼ð0.5;0.2Þ, Lx ¼ 14.8 μm, ~δ ¼ ð0; δÞ,
and v0 ¼ 50 μm=s. Figure 3(a) illustrates the paths of
several beads for Λ ¼ 0.68Lx, indicated with an arrow in
Figs. 3(b) and 3(c). Blue and red curves correspond to jx
and jy, respectively, for three values of D=D0. The current
along x is now negligible, while jy exhibits a periodic
behavior. This is what we refer to as a lateral current, since
it is perpendicular to the driving.
When the displacement of a particle in each activation

semicycle is Δx ∼ Lx=2, it gets attracted to the potential
well above it (along the þy direction) during the waiting
time, because of the well asymmetry. This process is
repeated when the particle moves along −x in the next
activation semicycle. As a result, the bead moves a total
distance of approximately 2by along þy in each driving
period (see the video in [34]). As Λ increases, such that
Δx → Lx in each semicycle, jy → 0; in that case the
particle only moves back and forth between two wells

(a) (b)

(c)

FIG. 2. Experimental images showing the paths of an ensemble
of particles for [34]: (a) Λ ¼ 13 μm and (b) Λ ¼ 23 μm.
(c) Numerical simulations for the components of the current,
jx (blue) and jy (red), as a function of Λ, for three values of the
relative diffusion coefficient D=D0. The shadows around the
curves for D=D0 ¼ 0.41 represent the standard deviations.
The inset illustrates the intensity pattern and the direction of
the driving (double arrow). Experimental results correspond to
D=D0 ¼ 0.41 (markers). The parameters are Lx ¼ 14.8 μm,
bx=Lx ¼ 0.5, by=Lx ¼ 0.15, v0 ¼ 21 μm=s.

(a)
(b)

(c)

FIG. 3. (a) Paths of an ensemble of particles for Λ ¼ 10 μm.
(b) Normalized current components (jx blue curves and jy red
curves) vs Λ for the optical lattice shown in the inset, for three
values of D=D0. Lx ¼ 14.8 μm, v0 ¼ 50 μm=s, bx ¼ 0.5Lx, and
by ¼ 0.2Lx. (c) Current components for D=D0 ¼ 0.41 and three
values of by=Lx. The shadows in (b) and (c) correspond to the
standard deviations for D=D0 ¼ 0.41 and by=Lx ¼ 0.2. The
markers represent experimental values.
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along x. The lateral current reaches a second maximum
when Δx ∼ 3Lx=2.
The magnitude of the lateral current can be optimized by

varying the geometric parameter of the lattice by=Lx, as
illustrated in Fig. 3(c) for D=D0 ¼ 0.41. The closer the
traps are to each other along the y direction, for instance,
by=Lx ¼ 0.15 (dashed curve), the easier the particle falls
into the top well, but the maximum lateral current is limited
due to the small value of by. In contrast, for sufficiently
large values of by, such as by=Lx ¼ 0.3 (dash-dotted
curve), the probability for the particle to reach the top
well diminishes. Larger values of by lead to jy → 0. There
is an optimum value of by=Lx, however, giving rise to a
maximum lateral current. In our example this is close to
by=Lx ¼ 0.2 (solid curve), although in general it depends
on D=D0 and the depth and shape of the potential wells.
Although a lateral current has been observed in other
ratchets operated by an ac microfluidic flow [25], the
optimization would not be as straightforward as in our
system, since we have fine control of the steps along x
and y.
III. Oblique current. In the third scheme, we have an

oblique lattice with a spatial asymmetry of each potential
well along x, parallel to the rocking force, with parameters

~a=Lx ¼ ð1; 0Þ, ~b=Lx ¼ ð1=3; 1=9Þ, Lx ¼ 18.5 μm, and
~δ ¼ ðδ; 0Þ. The driving velocity is v0 ¼ 24 μm=s, which
allows the particle to escape to the right but not to the left.
Figure 4 presents numerical results for jx (blue) and jy (red)
for D=D0 ¼ 0, 0.41, and 1. The image on top shows an
experiment for Λ ¼ 0.6Lx, indicated in the plot. Here the
current of particles follows an oblique direction with
respect to the forcing. To the best of our knowledge, this
is the first time an oblique current is demonstrated in a 2D
rachet in the absence of an external constant force.

Remarkably, the nonzero current along y suggests an
additional symmetry breaking associated with a coupling
between the asymmetry of each potential well and the
geometry of the lattice itself.
In this case, interesting features arise, particularly in the

deterministic limit D=D0 ¼ 0 (dash-dotted curves). When
Δx ∼ Lx=3 to the right, the particle is attracted by the
nearest potential well along þy during the waiting time,
leading to jx ¼ 1=3 and jy > 0. As Λ increases, there is a
value for which the particle reaches an unstable equilibrium
position, equally close to a well above it and another below
it. In the absence of noise, both components of the current
become null (point A in Fig. 4). As Λ keeps increasing so
that Δx ∼ 2Lx=3, the particle is attracted to the well below
it; therefore, jx ¼ 2=3 and jy < 0, implying a current
reversal for jy. There is a second unstable equilibrium
position for a larger value of Λ when the particle ends up
equally close to the well below it and the one on its right
(point B in Fig. 4). After this point, we can see a small
region of the plots for which jy > 0 and jx ¼ 1=3. This is
because the particle is unable to reach a well when it moves
forward, but on its way backwards it ends up close enough
to the well above it at a distance x ∼ Lx=3 from its initial
position, falling in the well during the waiting time. Finally,
when Λ is such that Δx ∼ Lx, then jx ¼ 1 and jy ¼ 0;
hence, the dynamics is reduced to a 1D motion along x.
Notice that the effect of diffusion is to soften these sharply
stepped curves [15]. Therefore, we expect the current
reversal (jy < 0) to occur also for small values of D=D0

and gradually disappear as diffusion increases.
In summary, we demonstrated directed transport of

Brownian particles along different directions in a fully
reconfigurable 2D optical ratchet potential activated with a
rocking driving, showing in all cases a good agreement
between experiment and simulations. The most important
aspect to define the current direction was found to be the
asymmetry and not the driving direction, and yet we
showed a system in which the orientation of the asymmetry
of each potential well did not coincide with the transport
direction, suggesting an additional symmetry breaking as a
result of a coupling with the lattice configuration. We also
observed that the presence of unstable equilibrium posi-
tions gives rise to noise-induced transport. Our analysis
unveiled only a few important aspects on the dynamics, but
there is a plethora of effects that may arise as a function of
different parameters, such as size-dependent interaction
between particle and potential [13], chaotic behavior [11],
negative mobility [35], etc. This illustrates how rich,
versatile, and powerful our experimental device is, opening
up a whole new range of research possibilities in the study
of 2D transport at the microscopic scale and colloidal
systems as mechanical models for solid-state physics, not
only at the fundamental level, but also with relevant
applications in the design of micro- and nanodevices
suitable for on-chip implementation.

FIG. 4. jx (blue) and jy (red) vs Λ for the optical lattice shown
in the inset, for three values ofD=D0. Lx ¼ 18.5 μm, bx ¼ Lx=3,
by ¼ Lx=9, and v0 ¼ 24 μm=s. Markers denote experimental
values for D=D0 ¼ 0.41. The image on top shows the trajectories
of several particles for Λ ¼ 11 μm [34].
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