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We explore a scenario where local interactions form one-dimensional gapped interfaces between a pair
of distinct chiral two-dimensional topological states—referred to as phases 1 and 2—such that each gapped
region terminates at a domain wall separating the chiral gapless edge states of these phases. We show that
this type of T junction supports pointlike fractionalized excitations obeying parafermion statistics, thus
implying that the one-dimensional gapped interface forms an effective topological parafermionic wire
possessing a nontrivial ground state degeneracy. The physical properties of the anyon condensate that gives
rise to the gapped interface are investigated. Remarkably, this condensate causes the gapped interface to
behave as a type of anyon “Andreev reflector” in the bulk, whereby anyons from one phase, upon hitting the
interface, can be transformed into a combination of reflected anyons and outgoing anyons from the other
phase. Thus, we conclude that while different topological orders can be connected via gapped interfaces,
the interfaces are themselves topological.
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Introduction.—Topological phases (TPs) of matter in
two dimensions (2D) are often characterized by a “bulk-
boundary” correspondence. Bulk properties such as a
topological band structure, quasiparticles exhibiting frac-
tional statistics, or topological ground state degeneracy on
manifolds with nonzero genus go hand in hand with an
associated set of boundary or interface states where a TP
meets a different one such as the vacuum [1].
TPs appear in two general classes: symmetry protected

[2–15], or those that have “intrinsic” topological order [16].
There are several important distinctions between these
classes, e.g., differing constraints on the ability to open
a gap in the edge-state spectrum. For the first class, gapped
boundaries can exist when the symmetry is broken explic-
itly or spontaneously. In the latter, interface states with
nonvanishing chirality cannot be completely gapped, and,
surprisingly, even in the absence of any symmetries, some
interfaces with vanishing chirality cannot be completely
gapped either [17]. This observation may directly impact
experiment since such an ungappable edge may exist in the
ν ¼ 2=3 fractional quantum Hall effect, or at the interface
between two fractional quantum Hall states with, e.g.,
filling factors ν ¼ 1=3 and ν ¼ 1=5. The latter interface
cannot be gapped by any local interaction, essentially due
to the completely incompatible bulk properties of the
two TPs.
In this Letter we focus on the complementary effect that

allows disparate TPs to support gapped interfaces (GIs), as
they provide a domain for a wide range of interesting
physics. The existence of such an interface requires that a
local gapping condition be satisfied [see discussion around
Eq. (2)], which physically amounts to the allowed for-
mation of an anyon condensate (AC) at the interface. It has

been established, for two-dimensional Abelian TPs, that
each AC is in one-to-one correspondence with a math-
ematical structure called a “Lagrangian subgroup,” [17–19]
which is a subset M of the set of anyons wherein (i) all
quasiparticles have mutual bosonic statistics, and (ii) every
quasiparticle not in M has nontrivial statistics with at least
one quasiparticle of M. Hence, the simultaneous conden-
sation of the quasiparticles in M is allowed by (i), and
confines all the anyons of the theory by (ii). Of great
interest are configurations where inequivalent ACs, corre-
sponding to inequivalent choices of M, are formed in
adjoining regions of a topological interface. Indeed,
domain walls between these gapped regions have been
shown to host non-Abelian defect bound states with
parafermionic statistics [20–27]. Such bound states could
be used as a platform for realizing topological quantum
computation [28].
In this Letter we characterize a family of one-

dimensional gapped topological systems that can be formed
at the interface between different 2D Abelian TPs. For our
examples, we choose single-component chiral phases
characterized by the topological invariants (K matrices)
k1 and k2, respectively. Hereafter we refer to these as phase
1 and phase 2. If these phases arise from charge conserving
quantum Hall states, then we have k1;2 ¼ ν−11;2, where ν is
the filling fraction that measures the Hall conductance in
fundamental units. More generally, for systems without
Uð1Þ (electromagnetic) charge conservation symmetry,
e.g., chiral spin liquids [1,29], k1;2 count the number of
distinct bulk quasiparticle types in each phase, and give the
topological ground state degeneracy gki of each system
defined on a spatial manifold of genus g. For our discussion
we adopt the interface geometry in Fig. 1. The bulk TPs
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share a GI with each other, and they have a boundary with
the vacuum that contains propagating chiral edge modes,
such that the GI terminates at points separating gapless
edge states of distinct phases.
Our main finding is that such an interface forms a

topologically nontrivial, one-dimensional gapped system
with a degenerate ground state manifold associated with
parafermionic end states. We stress that, instead of being
located at the domain walls between different GIs, the
parafermions discussed here are situated at domain walls
between gapless edge states of phases 1 and 2, as shown in
Fig. 1. Therefore this physical scenario departs signifi-
cantly from those of Refs. [20–24,26,27], and more closely
matches the setup of Ref. [30], though here we are focused
more on what is happening in the bulk, rather than the edge
as in their discussion. Ultimately, our results identify that,
while one can find gapped interpolations between 2D
phases with different topological order, these are not trivial
gapped regions; they are instead topological themselves.
We support our result with a bosonization description of

the edge containing a pair of counterpropagating modes
from the two phases. We (1) construct the explicit form of
the local, gap-opening interaction, (2) provide a description
of the interface AC, (3) discuss the onset of the topologi-
cally degenerate ground state manifold associated with the
expectation value of a nonlocal operator, and (4) discuss the
connection between bulk confinement-deconfinement tran-
sitions, edge-state transitions, and the bound parafermion
modes.

1. Luttinger liquid description of the interface—In
Fig. 1(a), we consider an array of 2D topological states
in phase 1 (blue) and phase 2 (brown), surrounded by the
vacuum. As shown in Supplemental Material (SM), the
most generic gappable interface for one-component states
is characterized by k1 ¼ pn2 and k2 ¼ pm2, where
p;m; n ∈ Zþ. The low energy Lagrangian of each interface
along the x direction is given by

Lx ¼
1

4π
∂tΦTK∂xΦ −

1

4π
∂xΦTV∂xΦ −Hint½Φ�; ð1aÞ

K ¼
�
pn2 0

0 −pm2

�
; Φ ¼

�
ϕ1

ϕ2

�
; ð1bÞ

where ϕ1;2 represent the right- and left-moving edge modes
originating from phases 1 and 2, V is a velocity matrix, and
Hint½Φ� is a local interaction discussed below. The edge
fields satisfy commutation relations ½∂xϕiðt; xÞ;ϕjðt; yÞ� ¼
−2πiK−1

ij δðx − yÞ. To simplify our discussion we choose
m ¼ 1 and provide the details form > 1 in SM. This case is
also the most experimentally relevant as it includes inter-
faces between a ν ¼ 1 integer quantum Hall state with, e.g.,
a ν ¼ 1=9 fractional quantum Hall state when p ¼ 1,
n ¼ 3 [31,32].
With appropriate conventions, the quasiparticle excita-

tions on the edge are created by the vertex operators
exp ðilTΦÞ, where l is an integer vector. The exchange
statistics associated with taking a quasiparticle la
adiabatically around another quasiparticle lb is given by
the statistical phase Sab ¼ eiθab ¼ ei2πl

T
aK−1lb , and the

(topological) spin of each quasiparticle is given by the
self-statistics phase ha ¼ eiπl

T
aK−1la . Local excitations are

identified with ψ ¼ eiΛ
TKΦ, where Λ is an integer vector.

In Eq. (1) Hint½Φ� ¼ −J cos ðΛTKΦÞ ðJ > 0Þ is a local
gap opening interaction parametrized by the integer null
vector ΛT ¼ ða; bÞ satisfying [33]

0 ¼ ΛTKΛ ¼ pða2n2 − b2Þ: ð2Þ

Λ ¼ ð1; nÞ is a primitive solution [34] of (2) representing
the interaction between a single local operator ψ1 ¼ eipn

2ϕ1

of phase 1 with n local operators ψ†
2 ¼ e−ipϕ2 of phase 2,

Hint ¼ −J cos ðnΘÞ ∝ −Jψ1ψ
†
2…ψ†

2|fflfflfflffl{zfflfflfflffl}
n

þ H:c:; ð3Þ

where ΘðxÞ≡ pnϕ1ðxÞ − pϕ2ðxÞ. We explicitly show in
SM that one can always tune V to make interactions of the
form Hint relevant.
This interaction generates an AC at the interface as we

now describe. In phase 1 (phase 2), there are pn2 (p)
quasiparticle types labeled εa11 (εa22 ), a1 ¼ 1;…; pn2

(a2 ¼ 1;…; p). The set of anyons forms a discrete lattice

(a) (b)

(c)

FIG. 1. (a) An array of phases 1 (blue) and 2 (brown) showing
the gapped interfaces along the x direction (green). Each gapped
interface constitutes an AC that acts as an anyon Andreev
reflector whereby certain quasiparticles of phase 1 are trans-
formed into quasiparticles of phase 2 (and vice versa) as they
cross the interface; and quasiparticles can be reflected into
different quasiparticle types. (b) Original chiral gapless edge
states of the two phases. (c) Parafermion zero modes (black dots)
are located at the T junctions where the end points of the gapped
interface define a domain wall between the chiral gapless edge
modes of phases 1 and 2.
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[26,35–39], whereby anyons are topologically indistin-
guishable upon the attachment of local quasiparticles
ψ i ¼ εkii , i ¼ 1, 2. In the context of a Laughlin fermionic
(bosonic) state, ψ i represents the local fermion (boson) of
the ith phase.
Now we note that in phase 1 the anyon subset fεpnx1 ; x ¼

1;…; ng contains mutual bosons or fermions with spin
hðεpnx1 Þ ¼ eiπpx

2

. Furthermore, the quasiparticle χ1 ≡ εpn1
has the same spin as the local excitation ψ2 of phase 2; i.e.,
they are both bosons or fermions depending on the parity of
p. Physically this implies that the composite quasiparticle
σ ≡ χ1ψ

†
2 is a boson that can condense, and generate a

fully GI between phases 1 and 2. This condensation
process, mathematically, is a consequence of the relation
k1=k2 ¼ n2 ∈ Z2, which allows for the existence of a pn-
dimensional Lagrangian subgroup M containing σ.
Importantly, the interaction (3), which involves one local

operator of phase 1 and n of phase 2, breaks the Uð1Þ ×
Uð1Þ particle conservation symmetries of each phase down
to Z1 × Zn, where Z1 means no symmetry. Hence (3) is
invariant under Sβ: ψ1 → ψ1, ψ2 → ψ2ei2πβ=n, β ∈ Z. If the
phases began with a Uð1ÞEM electromagnetic charge
conservation symmetry, then this interaction breaks (pre-
serves) the symmetry when the charge vector is tT ¼ ð1; 1Þ
[tT ¼ ðn; 1Þ]. This discrete symmetry, it turns out, plays a
fundamental role in the identification of the GI as a
topological parafermion wire similar to those studied in
Refs. [40–46].
The topological properties of the GI can be more

transparently revealed by a description in the zero corre-
lation length limit J → ∞, where the interface Hamiltonian
density is given solely by Eq. (3), thus leading to a GI as
depicted in Fig. 1(c). In this limit there are n degenerate
ground states [Θq ¼ 2πq=n, q ¼ 1;…; n] associated with
the vacuum expectation value of the composite bosonic
operator σðxÞ ¼ χ1ðxÞψ†

2ðxÞ ¼ eiΘðxÞ, which represents a
bound state of χ1 ¼ eipnϕ1 with ψ†

2 ¼ e−ipϕ2 ,

∀x∶ σðxÞjΨqi ¼ ωqjΨqi; ω≡ ei½ð2πÞ=n�;

q ¼ 1;…; n: ð4Þ

The eigenstates (4) are in direct correspondence with
symmetry broken ground states of the ferromagnetic, zero
correlation length limit of an n-state clock model, where σ
naturally acquires the interpretation of a clock operator
satisfying σn ¼ 1 and σ† ¼ σn−1. However, while it would
seem possible to distinguish among the degenerate states
by a measurement of σðxÞ, hΨqjσðxÞjΨq0 i ¼ ωqδq;q0 [which
is equivalent to adding a perturbation δH ¼ δ cosðΘÞ to the
Hamiltonian (3)], the fact that σðxÞ is a nonlocal operator
does not permit such a local distinction, and is a hallmark of
the topological nature of the system. With this in mind, the
eigenstates (4) indicate a degenerate symmetry breaking

manifold associated with the global symmetry S ≡
Sðβ¼−1Þ ¼ e

−ði=nÞ
R

xR
xL

dx∂xϕ2ðxÞ whereby S†σðxÞS ¼ ωσðxÞ,
for xL ≤ x ≤ xR.
The topological nature of this system can be made

explicit by changing from the clock to the parafermionic
representation [47],

αðxÞ≡ σðxÞe−ði=nÞ
R

x

xL
dz∂zϕ2ðzÞ ≡ σðxÞξðxÞ; ð5aÞ

αðxÞαðyÞ ¼ αðyÞαðxÞei½ð2π=nÞ�sgnðy−xÞ; ð5bÞ

whereby αðxÞ is a product of the order, σ, and the disorder,
ξ, operators. Importantly, the boundary parafermion oper-

ators αðxLÞ ¼ σðxLÞ; αðxRÞ ¼ σðxRÞe−ði=nÞ
R

xR
xL

dx0∂x0ϕ2ðx0Þ

commute with the Hamiltonian (3), and the degenerate
ground state manifold is given by the eigenstates of the
nonlocal operator A ¼ α†ðxLÞαðxRÞ: AjΩai ¼ ωajΩai,
a ¼ 1;…; n, where the jΩai are linear combinations of
the jΨqi.
2. Edge transitions—As indicated in Figs. 1(b) and 1(c),

the formation of the GI prevents the propagation of the edge
modes in the x direction. While any point x ∈ ðxL; xRÞ
establishes a domain wall between distinct gapped bulk
TPs, the end states located at x ¼ xL;R correspond to
domain walls between distinct gapless edge states. In fact
we explicitly demonstrate the existence of parafermion
operators situated at the edge transitions. These parafer-
mions are nontrivial operators with quantum dimensionsffiffiffi
n

p
, which is a direct manifestation of the n-fold degen-

eracy of the GI. Similar physics was first explored in
Ref. [30], which focuses on transitions between distinct
edge terminations of the same bulk phase; our focus instead
is on the interface between different bulk phases, which
have an accompanying transition on the edge.
An important feature of the gappable topological interface

is that the bulk phases 1 and 2 can be related to each other by
the confinement (or deconfinement) of a 2D Zn gauge
theory. In order to see this, imagine phase 2 is coupled to a
Zn gauge theory in its deconfined phase. Let the gauge field
αμ describe the excitations of phase 2, and (aμ, bμ) the
excitations of the Zn gauge theory. Hence, the coupled
system is described by the Abelian Chern-Simons theory,

L2D ¼ 1

4π
εμνλcIμK̄IJðp; nÞ∂νcJλ ; ð6aÞ

K̄ðp; nÞ ¼

0
B@

p −1 0

−1 0 n

0 n 0

1
CAcμ ¼

0
B@

αμ

aμ
bμ

1
CA; ð6bÞ

where μ; ν; λ ∈ f0; 1; 2g. In this basis e ¼ ð0; 1; 0Þ and
m ¼ ð0; 0; 1Þ represent the original charge and flux excita-
tions of the gauge theory.
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A W ∈ GLð3;ZÞ change of basis yields [48]

Kg ≡WTK̄ðp; nÞW ¼ pn2 ⊕ Σ; ð7Þ
where Σ represents a Pauli matrix, i.e., a trivial sector that
can always be gapped out. Thus, Eq. (7) explicitly
illustrates that phase 1 can be obtained from phase 2 by
a gauging mechanism; reversely, phase 2 descends from
phase 1 by confining the Zn gauge theory. This kind of
gauging mechanism has proven useful in understanding the
classification of symmetry enriched topological states [52]
and hidden anyonic symmetries [27].
We now explicitly prove the existence of domain-wall

parafermions by analyzing the transitions between edge
phases 1 and 2. The transitions can be analyzed starting from
the bulk theory in Eq. (6), and using the standard bulk-
boundary correspondence for Abelian topological phases
[53]. Hence, we model gapless edge states propagating
along one of the edges, say x ¼ xL, with the effective theory

LxL;y ¼
1

4π
∂tΦ0TKg∂yΦ0 þ

X2
a¼1

JaðyÞHint;a ð8Þ

where Φ0Tðt; xL; yÞ ¼ ðϕ0
1;ϕ

0
2;ϕ

0
3Þðt; xL; yÞ are the edge

fields. The interactions Hint;1 and Hint;2 are chosen to
stabilize the edge phases 1 and 2, respectively, in different
spatial regions; i.e., the interaction Hint;1 (Hint;2) partially
gaps out two of the three edge modes to leave the single-
component edgemode of phase 1 (phase 2). To carry this out
we use position-dependent coupling constants J1ðyÞ and
J2ðyÞ such that J1 → ∞ and J2 ¼ 0 in phase 1, while J1 ¼ 0
and J2 → ∞ in phase 2. For concreteness, we take
p ¼ 2qþ 1 and Σ ¼ σz in (7), although similar results
can be obtained for the p ¼ 2q case with Σ ¼ σx.
The interaction choice

Hint;1 ¼ cos ðLT
1KgΦ0Þ; LT

1 ¼ ð0; 1; 1Þ ð9Þ
gaps the trivial modes in Σ yielding the edge states of
phase 1. Alternatively, the interaction

Hint;2 ¼ cos ðLT
2KgΦ0Þ; LT

2 ¼ (1; qn; ðqþ 1Þn) ð10Þ
gives rise to the edge state of phase 2, that is, it effectively
leads to the confinement of the Zn gauge theory. To see
this, notice that the edge excitations that remain deconfined
in the presence of the interaction (10) are described by
vertex operators exp ðilTΦ0Þ, with lT ¼ ðl1;l2;l3Þ,
such that lTΦ0 commutes with the argument of the inter-
action (10). From this condition, which is satisfied when
l1 ¼ −n½l2qþ ðqþ 1Þl3�, we find that the deconfined
edge excitations are those of the phase 2 described by
k2 ¼ p ¼ ð2qþ 1Þ. More intuitively, upon rewriting
Hint;2 ¼ cos ðLT

2KgΦ0Þ ¼ cos ðL̄T
2 K̄Φ̄0Þ ¼ cos ðnϕ̄0

2Þ, with
L̄ ¼ WL and Φ̄0 ¼ WΦ0, (10) is seen as the expected
“electric”-mass interaction that confines the excitations of
the Zn gauge theory.

Defining the segments R�
1;i ¼ ðy2i−1 � ε; y2i ∓ εÞ and

R�
2;i ¼ ðy2i � ε; y2iþ1 ∓ εÞ, ε ¼ 0þ, we let the regions

Rþ
a ¼ ∪iR

þ
a;i, with a ¼ 1, 2, denote the edge phases 1

and 2 along the x ¼ xL edge. The operators OðaÞ
i ¼

expf½ði=nÞ RR−
a;i
dy∂yðLT

āKgΦ0Þ�g, where ā≡aþð−1Þaþ1,

are seen to commute with the edge Hamiltonian and satisfy
the nontrivial commutation relations

Oð1Þ
i Oð2Þ

k ¼ Oð2Þ
k Oð1Þ

i eð2πi=nÞðδk;i−1−δk;iÞ: ð11Þ
The ground state manifold forms a representation of the
algebra (11), which implies a ground state degeneracy of
nk−1 in the presence of 2k domain walls on the boundary,
i.e., k GIs. The operators

αxL;l ¼ eði=nÞ½L
T
al
KgΦ0ðylþεÞ−LT

āl
KgΦ0ðyl−εÞ�; ð12Þ

[a2ið2iþ1Þ ≡ 2ð1Þ], with support on the domain walls along
the x ¼ xL edge satisfy, as expected, parafermionic algebra
αxL;kαxL;l ¼ αxL;lαxL;kω

sgnðk−lÞð−1Þkþl
. For a generic GI

between one-component states we have the constraint
k1 ¼ ðn2=m2Þk2 which implies that the phases must be
related by the confinement of a Zm gauge theory, and the
subsequent gauging and deconfinement of a Zn symmetry.
In these cases one would find Zmn parafermions (see SM
for more details).
A realization of the algebra (11) has been studied in

Ref. [30], for the transitions between chiral bosonic edge
states with k1 ¼ 2n2 and k2 ¼ 2. While their approach
focused solely on the edge transitions of a homogenous
bulk phase, our formulation shows that the existence of
nontrivial parafermionic modes (12) is a direct conse-
quence of the formation of a GI between different chiral
topological states. Hence, we have generalized their result
to arbitrary one-component edge transitions, and have
shown that such transitions can originate from a bulk
phenomenon associated with confinement-deconfinement
transitions of discrete gauge theories. Additionally, since
these parafermions appear at a T junction between two
chiral gapless states and the termination of their GI, they
represent a completely new physical phenomenon when
compared with the cases studied in Refs. [20–24,26,27].
We note that the GI acts like an anyonic Andreev reflector

in the bulk. Anyons from, say, phase 1 hit the interface and
are transformed into a combination of outgoing anyons in
phase 2 as well as reflected anyons that remain in phase 1.
Take p ¼ 1, m ¼ 1 for simplicity. Then as, for example,
quasiparticle χ1 ¼ εn1 approaches the interface, a vacuum
fluctuation can create a (ψ2; ψ̄2) pair in the region of phase 2
immediately adjacent to the interface; subsequently, the
condensation of (χ1ψ̄2) leaves behind the quasiparticle ψ2 in
phase 2, as shown in Fig. 1(a). The quasiparticles fεnx1 ; x ∈
Zg belonging to phase 1 can be absorbed by the GI and fully
transmuted into multiples of the local excitation ψ2 of
phase 2. Other anyons hitting the interface are partially
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transmuted and partially reflected by the condensate.
For example, if ε1 hits the surface it could generate a ψ2

in phase 2 as well as a reflected εð−nþ1Þ
1 .

In summary, we have shown that a gapped interface
between different topologically ordered phases cannot be
topologically trivial itself. The interpolation between the
topological orders generates a quasione-dimensional topo-
logical parafermion phase that exhibits characteristic non-
Abelian defect modes where the interface intersects the
boundary of the system. Although we have only shown this
for one-component interfaces, we expect the generaliza-
tions to more complicated interfaces to provide a rich set of
phenomena. Furthermore, our result may aid in the inter-
pretation of the topological entanglement entropy arising at
heterointerfaces of topologically ordered phases as recently
calculated in Ref. [54]. We leave this to future work.
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