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The importance of spatial nonlocality in the description of negative refraction in electromagnetic
materials has been put forward recently. We develop a theory of negative refraction in homogeneous and
isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory
shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative
refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These
fundamental results should have broad implications in the theoretical and practical analyses of negative
refraction of electromagnetic and other kinds of waves.
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The study and design of artificial materials (metamate-
rials) with exotic electromagnetic properties has attracted a
lot of attention at both the theoretical and experimental
levels. Negative refraction has remained one of the most
intriguing properties: In a certain range of frequencies, the
energy flow is opposite to the direction of the phase velocity
[1–5]. Local electrodynamics in continuous media, in terms
of the electric permittivity ϵðωÞ and magnetic permeability
μðωÞ, has been the privileged framework to investigate the
conditions for negative refraction [5]. The first metamate-
rials exhibiting negative refraction were severely limited by
absorption, and various strategies have been explored to
design almost transparent media. Nevertheless, the basic
principles of electrodynamics impose general constraints on
the response functions. In Ref. [6], the principle of causality
has been used to argue that, for spatially local materials,
dissipation is a necessary condition for negative refraction.
Recently, it has been observed that local effective ϵðωÞ and
μðωÞ, obtained fitting reflectivity or transmissivity curves,
usually exhibit physical inconsistencies, implying intrinsic
flaws in the use of local electrodynamics to analyze negative
refraction in certain artificial materials and the necessity to
include spatial nonlocal corrections to overcome such
inconsistencies [7–12]. Independently, it has been shown
that spatial nonlocality is a fundamental ingredient for
negative refraction in some specific materials [13,14].
Despite this progress, a theory providing a general

understanding of the conditions for negative refraction,
based on first principles and including spatial nonlocality,
is still missing. The purpose of this Letter is to develop such
a theory and to analyze its consequences in terms of
necessary and sufficient conditions for the observation of
negative refraction in natural and artificial electromagnetic
materials. The analysis leads to the intriguing conclusion
that negative refraction for electromagnetic waves is not
possible in the absence of spatial nonlocality and dissipa-
tion. It also gives some insight into a sufficient condition to
observe negative refraction in media with weak nonlocality.

These results provide a sound basis both for the theoretical
investigation of negative refraction in wave physics and for
the design and analysis of real materials.
Maxwell’s equations for electrodynamics in media can

be written in full generality as [15–19]

∇ ×B ¼ μ0jext þ μ0∂tD; ∇ ·D ¼ ρext;

∇ ×E ¼ −∂tB; ∇ ·B ¼ 0; ð1Þ
where jext and ρext are external current and charge densities,
respectively, and μ0 is the vacuum permeability. In the
framework of the linear response theory, the field D is
defined as [16–19]

Diðt; rÞ ¼ ϵ0

Z þt

−∞

Z
V
ϵijðt; t0; r; r0ÞEjðt0; r0Þdt0d3r0 ð2Þ

with V the volume of the medium and ϵ0 the vacuum
permittivity. Implicit summation over repeated indices is
assumed. The dielectric function ϵijðt; t0; r; r0Þ is propor-
tional to the retarded correlator of the current density and
encodes both the electric and magnetic response of the
medium [15–19]. In this formalism, there is no need to
introduce an additional field H, provided that the full
dispersive and nonlocal behavior of the dielectric function
is taken into account [20]. For simplicity, we restrict the
analysis to linear, isotropic, nongyrotropic, and homo-
geneous materials, and leave generalizations for further
studies. Apart from this restriction, all results are derived
from first principles, without any specification of a par-
ticular medium [21]. For translation-invariant media,
ϵijðt; t0; r; r0Þ ¼ ϵijðt − t0; r − r0Þ, and in Fourier space
Eq. (2) reads as

Diðω; kÞ ¼ ϵ0ϵijðω; kÞEjðω; kÞ; ð3Þ
where ω is the frequency and k is the wave vector that
describes spatial nonlocality. All magnetic effects, such as
the magnetic response usually described in terms of a local
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permeability μðωÞ, or even the magnetoelectric activity,
can be encoded into specific spatial nonlocal properties of
the dielectric function [15,17–19]. A discussion on this
formalism, its relevance for a first-principles analysis and
its relation with the local formalism are provided in the
Supplemental Material [20].
ϵijðω; kÞ has to satisfy various properties [16,18,22,23].

Causality implies that ϵijðt − t0; r − r0Þ vanishes for t < t0.
In the frequency domain, this means that ϵijðω; kÞ is an
analytic function of ω in the positive half part of the
complex plane for which Imω > 0. This property leads to
the Kramers-Kronig relations

Reϵijðω; kÞ − δij ¼
2

π
P
Z þ∞

0

ω0Imϵijðω0; kÞ
ω02 − ω2

dω0;

Imϵijðω; kÞ ¼ −
2ω

π
P
Z þ∞

0

Reϵijðω0; kÞ − δij
ω02 − ω2

dω0;

ð4Þ
where P stands for the principal value. It is important to
highlight that the Kramers-Kronig relations are valid for all
values of k, that essentially plays the role of a parameter in
the equations and is, at this stage, independent on ω. In
isotropic media, the dielectric function takes the form

ϵijðω; kÞ ¼ ϵTðω; kÞ
�
δij −

kikj
k2

�
þ ϵLðω; kÞ

kikj
k2

; ð5Þ

where ki are the components of k and k ¼ jkj [24]. The
response of the material is expressed in term of two scalar
functions only, the transverse and the longitudinal dielectric
functions ϵTðω; kÞ and ϵLðω; kÞ, that both satisfy the
Kramers-Kronig relations (4).
From the Kramers-Kronig relations and minor assump-

tions on the asymptotic behavior of ϵT;Lðω; kÞ when
ω → ∞, various sum rules can be derived [23,25]
that encode important information and constraints on
ϵT;Lðω; kÞ. Indeed, for a generic medium, for ω → ∞,
ϵT;Lðω; kÞ → 1 − ω2

p=ω2 [18], where ω2
p ¼ ne2=ðmϵ0Þ is

the square of the plasma frequency, as if the electrons were
free, n being the electron density of the material and e and
m the charge and the mass, respectively, of the electron,
while the imaginary part of ϵT;Lðω; kÞ goes to zero faster
than 1=ω2 [25]; see [26]. An important sum rule is [25]

Z þ∞

0

ImϵT;Lðω0; kÞω0dω0 ¼ πω2
p

2
: ð6Þ

Note that Eq. (6) is valid for all values of k. Finally, for any
passive medium and for real positive values of k and ω [27],
the dielectric function satisfies [22,23]

ImϵT;Lðω; kÞ ≥ 0: ð7Þ
Equations (4), (6), and (7) are fundamental relations that
constrain the actual electrodynamic properties of any causal
and passive medium.

The frequency ω and the wave vector k have been
treated so far as independent variables; i.e., the system is
considered “off-shell,” as usual in the linear response
theory [22,23] (due to the presence of external sources,
ω and k do not have to satisfy any relation [16]). When
considering the propagation of electromagnetic waves in a
medium without external charges or currents, Maxwell’s
equations impose the dispersion relations

ϵTðω; kÞ ¼
c2k2

ω2
; ϵLðω; kÞ ¼ 0 ð8Þ

for the transverse and longitudinal components of the
electric field E, respectively, with c the speed of light in
a vacuum. Equations (8) define a set of relations between
the wave vector k and the frequency ω. These relations
provide further restrictions to the electrodynamics in the
medium. In the presence of spatial nonlocality, both the
transverse and longitudinal components of the electric field
can propagate. In this Letter, we focus on the response to
transverse electromagnetic waves.
We shall first discuss the particular case of transparent

media. In this case, negative refraction means that, in a
certain range of frequencies, phase and group velocities
have opposite directions. Indeed, both the electromagnetic
energy density and the Poynting vector are well defined, the
latter being simply the product of the electromagnetic
energy density and the group velocity (the group velocity
equals the energy velocity, at least for media with weak
spatial nonlocality [28]). For local media, it has already
been argued that negative refraction cannot be observed in
the absence of dissipation [6,16]. We will now show that
the same conclusion holds in the presence of spatial
nonlocality, namely, that, for transverse waves, negative
refraction is not possible in the frequency region of trans-
parency of a medium.
In the transparency region ImϵT;Lðω; kÞ ¼ 0, and the

Kramers-Kronig relations involve standard integrations.
Deriving Eq. (4) with respect to the frequency [16,18]
and using Eq. (7), we obtain

d½ReϵT;Lðω; kÞ�
dω

≥ 0 ð9Þ

for all frequencies in the transparency region (this is not the
case in regions in which absorption cannot be disregarded,
where the dielectric function can satisfy d½ReϵT;Lðω; kÞ�=
dω < 0, known as anomalous dispersion). For trans-
verse waves, Eq. (8) implies n2T ½ω; kðωÞ� ¼ k2c2=ω2 ¼
ϵT ½ω; kðωÞ�, with nT the transverse refractive index,
and hence the dispersion relation kðωÞ. The transverse
group velocity is defined as vTg ¼ dωðkÞ=dk ¼ c½dðωnTÞ=
dω�−1 ¼ c½nT þ ωdnT=dω�−1, while the phase velocity is
vTp ¼ c=nT [29]. Using Eq. (9), noticing that k and nT are
real functions of the frequency, we obtain nTdnT=dω > 0
or, equivalently,
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vTg vTp > 0: ð10Þ

This implies that, as a consequence of causality, negative
refraction for transverse waves is not possible in the
transparency spectral region of a medium.
We shall now perform a general analysis of the con-

ditions for negative refraction, including both dissipation
and spatial nonlocality. For nontransparent media, a con-
sistent definition of concepts such as energy density, energy
flux, or heat dissipation rate is out of reach [16]. In
particular, the group velocity does not define the direction
of the energy flow. We have to find an alternative way to
assess the direction of the energy flow based on the wave
vector. To proceed, we use Eq. (8) to obtain the dispersion
relation kðωÞ. Since we consider passive media, the
direction of the energy flux is dictated by the direction
of the dissipation of energy or, equivalently, of the damping
of the wave amplitude, the latter being given by the sign of
Imk. The direction of the phase velocity is given by Rek. As
a result, a general condition for negative refraction is the
existence of frequencies ω such that [30]

Re½kðωÞ�Im½kðωÞ� < 0; ð11Þ
meaning that the damping of the wave amplitude occurs in
a direction opposite to the phase velocity.
We have demonstrated previously that negative refrac-

tion is not possible without dissipation. We shall now show
that spatial nonlocality itself is a necessary condition for
negative refraction. Let us consider a dissipative medium
for which spatial nonlocality is assumed to be negligible.
For transverse waves, we have ϵTðω; kÞ≡ ϵ0ðωÞ, and the
dispersion relation Eq. (8) simplifies into

kðωÞ ¼ ω

c

ffiffiffiffiffiffiffiffiffiffiffi
ϵ0ðωÞ

q
: ð12Þ

We choose to represent any complex number z as
z ¼ ρzeiϕz , with ρz ≥ 0 and 2π > ϕz ≥ 0. Because of
Eq. (7), Imϵ0ðωÞ ≥ 0 for real frequencies, and the phase
ϕϵ0 must satisfy 0 ≤ ϕϵ0 ≤ π. The phase of its square root
then satisfies 0 ≤ ϕ ffiffiffi

ϵ0
p ≤ π=2, and hence

0 ≤ ϕk ≤ π=2: ð13Þ
Equation (13) is clearly in contradiction with condition
(11), and we are left with the conclusion that spatial
nonlocality and dissipation are necessary conditions for
the existence of negative refraction. This is the first
important result in this Letter. Although a related discus-
sion can be found in Ref. [16], these necessary conditions
have not been stated previously to our knowledge. Finally,
let us note that the necessity of spatial nonlocality also
holds for longitudinal waves. Indeed, in the absence of
spatial nonlocality, the longitudinal component of the
electric field cannot propagate and, hence, cannot exhibit
negative refraction.

We now investigate the existence of a sufficient
condition for negative refraction. For nongyrotropic media,
due to invariance under point reflection, ϵT;Lðω; kÞ can be
expanded in powers of k2 in the form (contributions with
odd powers of k are forbidden by symmetry)

ϵT;Lðω; kÞ ¼ ϵ0ðωÞ þ
Xþ∞

l¼1

ϵlT;LðωÞðkLÞ2l; ð14Þ

whereL denotes the largest intrinsic characteristic length of
the material (e.g., the lattice constant for crystals, the mean
free path of conduction electrons for metals, the Debye
screening length for plasmas, etc.) and vanishes in local
media. Inserting Eq. (14) into the sum rule (6) and
imposing the validity of the resulting equation for any
value of k, we obtain

Z þ∞

0

Imϵ0ðω0Þω0dω0 ¼ πω2
p

2
;

Z þ∞

0

ImϵlT;Lðω0Þω0dω0 ¼ 0; l > 0: ð15Þ

Equations (15) imply that, for l > 0, the functions
ImϵlT;LðωÞ have to change sign in the interval
ω ∈ ½0;þ∞�. This apparently surprising result is a direct
consequence of causality [20]. This is not in contradiction
with Eq. (7), since it only applies separately for each
ϵlT;LðωÞwith l > 0, and Imϵ0ðωÞ > 0, while Eq. (7) implies
that the imaginary part of the total sum (14) (for real k) is
positive.
For transverse waves, and for isotropic and nongyro-

tropic media, we shall now prove that the first nonlocal
correction to the dielectric function gives a sufficient
condition for the existence of negative refraction. Let us
consider the dielectric function [31]

ϵTðω; kÞ ¼ ϵ0ðωÞ þ ϵ1TðωÞðkLÞ2: ð16Þ
Inserting Eq. (16) into (8), we obtain

kðωÞ ¼ ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0ðωÞFðωÞ

q
; ð17Þ

where FðωÞ ¼ ½1 − ω2L2ϵ1TðωÞ=c2�−1. From Eq. (15), we
have deduced that there exist frequencies ω such that
Imϵ1TðωÞ < 0, leading to ImFðωÞ < 0. Since ϕk ¼ ϕ ffiffiffiffi

ϵ0
p þ

ϕ ffiffiffi
F

p , we can state that

∃ω such that π ≥ ϕk > ϕ ffiffiffi
ϵ0

p þ π=2: ð18Þ
This condition on the phase of the wavevector amounts to
showing that frequencies for which Eq. (11) (defining
negative refraction) is satisfied necessarily exist. We
conclude that a nonlocal medium, that can be represented
as the most general first-order correction (allowed by
symmetry) to a local response Eq. (16), necessarily has
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a range of frequencies in which negative refraction is
observed. This is the second important result in this Letter.
Two comments are worth noting. First, applying the

same analysis to longitudinal waves does not allow us to
conclude on the existence of a sufficient condition for
negative refraction in this case. Second, we stress that,
while dissipation and spatial nonlocality are necessary
conditions, they are not, in general, sufficient conditions
for negative refraction. For example, consider the nonlocal
transverse dielectric function

ϵTðω; kÞ ¼ 1 −
N2

0

ω2 −D2
0 þ iD1ω −D2k2 þ iD3ωk2

; ð19Þ

representing the generic response of a spatially nonlocal
(isotropic, homogeneous, and passive) medium near a
resonance. N0 and Dj are the first real positive constant
coefficients of the most general expansion in powers of ω
and k2. For particular choices of the system, such coef-
ficients reduce to well-known physical quantities—e.g., the
average collision time, viscosity, decay width, plasma
frequency squared, square of the frequency gap, etc.—
and (19) can describe the response of charged viscous
fluids (e.g., electrons in certain metals [13]) or the spatially
nonlocal Lorentz model (e.g., exciton-polariton resonance
for certain semiconductors [32]). See [20]. Changing
the values of the coefficients of the k2 terms, one can
switch from a negative refraction regime to a positive
refraction regime at low frequencies, as previously shown
for the electron hydrodynamic model [13] (see [20]). The
analysis therefore leads to the conclusion that spatial
nonlocality supports, but does not necessarily imply,
negative refraction [33].
Before concluding, it is worth commenting on the

relation between the formalism used in this Letter and
the more familiar local formalism. The usual local analysis,
in terms of the dielectric function ϵðωÞ and a magnetic
permeability μðωÞ, is clearly included in the nonlocal
formalism described in this Letter in term of a single
spatially nonlocal response function ϵijðω; kÞ. It indeed
emerges as a particular case in the limit ω=k → 0 and
k → 0 (see Refs. [18–20]). In this limit, our result that
spatial nonlocality is a necessary condition for negative
refraction translates into the well-known fact that, in the
local limit, to observe negative refraction it is necessary to
have both ϵðωÞ ≠ 1 and μðωÞ ≠ 1. The sufficient condition
for negative refraction, usually stated in the local formalism
in the form Re½ϵðωÞ�jμðωÞj þ Re½μðωÞ�jϵðωÞj < 0 (see,
e.g., Refs. [1,5,30,34]), is consistent with (although not
implied by) our analysis. Indeed, the sufficient condition of
a k2 nonlocal correction does not require any constraints on
the general form of the nonlocal permittivity Eq. (16).
However, one should not conclude that the theory described
in this Letter is a mere generalization of a well-established
approach. The use, in the first place, of a nonlocal

description of the electrodynamic response is fundamental
at least for three reasons. First, the meaning of μðωÞ as a
true response function [with ImμðωÞ ≥ 0 for passive media]
is valid only for very small k and in a limited range of
frequencies in the neighborhood ω=k ¼ 0 [18–20]. Outside
this range, μðωÞ loses its meaning of a magnetic per-
meability, and its imaginary part has, in general, an
indefinite sign [20]. This is actually the reason behind
the sufficient condition for negative refraction proven in
this Letter [the function FðωÞ in Eq. (17) can be understood
as an effective permeability]. Second, the analysis based on
a nonlocal dielectric function reveals that μðωÞ, even if
apparently a local response, encodes (some of) the nonlocal
effects to the order of k2 initially included in the nonlocal
dielectric function ϵT;Lðω; kÞ [20]. Therefore, the existence
of a permeability μðωÞ ≠ 1, as a condition for negative
refraction in the local approach, can be seen as a disguised
residual of spatial nonlocality. Third, the local formalism,
although appropriate for a phenomenological analysis of
certain materials, cannot be used for a first-principles
analysis of negative refraction on the full spectrum of
frequencies because of its limited range of validity around
ω=k ¼ 0 and k → 0 [17–19]. In the present Letter, we
applied constraints coming essentially from causality
[except for Eq. (8)]. In the local limit, it is possible to
include thermodynamical constraints as well, that are
instead, in general, not valid in the nonlocal theory. In
Ref. [35], it has been indeed argued that thermodynamics
forbids negative refraction in the local limit. Indeed,
thermodynamical considerations allow us to conclude that
negative refraction is realized exactly outside the regime of
applicability of the ϵðωÞ and μðωÞ, and the nonlocality
needed in the ϵT;Lðω; kÞ formalism to include magnetic
effects is not enough to support negative refraction, while
dependency of the response on the spatial derivatives of the
electric field is needed as well. This is true also in the
“weak” spatial nonlocal case; see (16).
In conclusion, we have demonstrated that negative

refraction of electromagnetic waves is intrinsically related
to both dissipation and spatial nonlocality. Their simulta-
neous presence is a necessary condition for negative
refraction. The implications of the theory developed in
this Letter are manyfold. At the fundamental level, the
analysis can be extended nonisotropic, nonhomogeneous,
or non-point-reflection-invariant media, to assess if, and
under which conditions, the main results of this Letter
remain valid. Very interesting is also to extend the analysis
of this Letter to other kinds of waves such as acoustic
waves, for which the design of negative refraction materials
is an active field as well. At a practical level, the results in
this Letter show that nonlocality should not be considered
as a refinement of the existing theories, allowing one to
improve in an incremental way the precision in the
determination of the effective response functions of real
materials. Instead, any inverse procedure should include in
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the first place nonlocality, since its exclusion is funda-
mentally inconsistent and can lead to uncontrollable
systematic errors. Finally, our results open the way to a
systematic classification of media with or without negative
refraction, providing a clear connection between this
phenomenon and the dynamical properties of materials,
as already shown in the case of metals [13].

D. F. thanks V. Markel for relevant discussions. This
work was supported by LABEX WIFI (Laboratory of
Excellence within the French Program “Investments for
the Future”) under references ANR-10-LABX-24 and
ANR-10-IDEX-0001-02 PSL*.

*davide.forcella@espci.fr
†claire.prada@espci.fr
‡remi.carminati@espci.fr

[1] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[2] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser,

and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[3] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[4] R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77

(2001).
[5] V. Veselago, L. Braginsky, V. Shklover, and C. Hafner,

J. Comput. Theor. Nanosci. 3, 130 (2006).
[6] M. I. Stockman, Phys. Rev. Lett. 98, 177404 (2007).
[7] A. V. Chebykin, A. A. Orlov, C. R. Simovski, Yu. S.

Kivshar, and P. A. Belov, Phys. Rev. B 86, 115420 (2012).
[8] V. Grigoriev, G. Demesy, J. Wenger, and N. Bonod,

Phys. Rev. B 89, 245102 (2014).
[9] P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov,

M. Silveirinha, C. R. Simovski, and S. A. Tretyakov,
Phys. Rev. B 67, 113103 (2003).

[10] A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S.
Kivshar, Phys. Rev. B 84, 045424 (2011).

[11] A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I.
Maslovski, Yu. S. Kivshar, and P. A. Belov, Phys. Rev. B
84, 115438 (2011).

[12] A. Alù, Phys. Rev. B 83, 081102(R) (2011).
[13] D. Forcella, J. Zaanen, D. Valentinis, and D. van der Marel,

Phys. Rev. B 90, 035143 (2014).
[14] A. Amariti, D. Forcella, and A. Mariotti, J. High Energy

Phys. 01 (2013) 105.
[15] V. M. Agranovich and Y. N. Gartstein, Phys. Usp. 49, 1029

(2006).
[16] V. M. Agranovich and Y. N. Gartstein, Crystal Optics with

Spatial Dispersion, and Excitons, second corrected and
updated edition (Springer-Verlag, Berlin, 1984).

[17] D. B. Melrose and R. C. McPhedran, Electromagnetic
Processes in Dispersive Media: a Treatment on the Dielec-
tric Tensor (Cambridge University Press, Cambridge,
England, 1991).

[18] L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continuous Media (Pergamon, New York, 1960).

[19] A. A. Rukhadze and V. P. Silin, Phys. Usp. 4, 459 (1961).

[20] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.134301 for some
of the details of the formalism used in the Letter.

[21] Because we consider homogeneous invariant systems, the
theory presented in the Letter, and, in particular, Eq. (3),
describes only the bulk response of a medium and not its
boundaries properties.

[22] L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419
(1963).

[23] D. Forster, Hydrodynamic Fluctuations, Broken Symmetries
and Correlation Functions (Benjamin-Cummings, Reading,
MA, 1975).

[24] For isotropic and nongyrotropic systems, the response
functions depend only on k2 ¼ kiki; see Eq. (14).

[25] M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y.
Smith, Phys. Rev. B 6, 4502 (1972).

[26] Such asymptotic behavior is dictated by simple very
general physical conditions: For a high frequency,
beyond any characteristic frequency of the medium, the
electrons essentially do not feel any binding forces, and
any system should respond as a gas of free electrons. For
higher frequencies, the medium does not have the time to
respond to external electromagnetic perturbation, and its
response should be exactly as if the medium were the
vacuum.

[27] It is important to stress that Eq. (7) does not hold true for
generic complex values of k. Moreover, for complex k,
ImϵT;Lðω; kÞ does not have, in general, a thermodynamic
interpretation as being proportional to the density of heat
liberated in the medium per unit time; see, for example, [16].

[28] S. M. Mikki and A. A. Kishk, Prog. Electromagn. Res. B 14,
149 (2009).

[29] In isotropic media, the group and phase velocities are both
along the direction defined by k. We report only the
coefficients of these vectors that define the versus of
propagation.

[30] For local media, this condition is equivalent to stating that
the Poynting vector points in the direction opposite to that of
the phase velocity. See, for example, M.W. McCall, A.
Lakhtakia, and W. S. Weiglhofer, Eur. J. Phys. 23, 353
(2002).

[31] This expansion is strictly valid only for small values of
ϵ0ðωÞ, while a similar expansion in terms of ϵ−1T ðω; kÞ
should be considered for large values of ϵ0ðωÞ; see, for
example, [19]. Hence, our sufficient condition for negative
refraction should be interpreted as strictly valid for small
values of ϵ0ðωÞ.

[32] G. H. Cocoletzi and W. L. Mochan, Surf. Sci. Rep. 57, 1
(2005).

[33] This result can be analyzed using a different approach based
on sum rules for the refractive index. It is not described here
for the sake of consistency and brevity and will be reported
elsewhere.

[34] R. A. Depine and A. Lakhtakia, Microwave Opt. Technol.
Lett. 41, 315 (2004).

[35] V. A. Markel, Opt. Express 16, 19152 (2008).

PRL 118, 134301 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

31 MARCH 2017

134301-5

https://doi.org/10.1070/PU1968v010n04ABEH003699
https://doi.org/10.1103/PhysRevLett.84.4184
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1126/science.1058847
https://doi.org/10.1126/science.1058847
https://doi.org/10.1103/PhysRevLett.98.177404
https://doi.org/10.1103/PhysRevB.86.115420
https://doi.org/10.1103/PhysRevB.89.245102
https://doi.org/10.1103/PhysRevB.67.113103
https://doi.org/10.1103/PhysRevB.84.045424
https://doi.org/10.1103/PhysRevB.84.115438
https://doi.org/10.1103/PhysRevB.84.115438
https://doi.org/10.1103/PhysRevB.83.081102
https://doi.org/10.1103/PhysRevB.90.035143
https://doi.org/10.1007/JHEP01(2013)105
https://doi.org/10.1007/JHEP01(2013)105
https://doi.org/10.1070/PU2006v049n10ABEH006067
https://doi.org/10.1070/PU2006v049n10ABEH006067
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.134301
https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1103/PhysRevB.6.4502
https://doi.org/10.2528/PIERB09031911
https://doi.org/10.2528/PIERB09031911
https://doi.org/10.1088/0143-0807/23/3/314
https://doi.org/10.1088/0143-0807/23/3/314
https://doi.org/10.1016/j.surfrep.2004.12.001
https://doi.org/10.1016/j.surfrep.2004.12.001
https://doi.org/10.1002/mop.20127
https://doi.org/10.1002/mop.20127
https://doi.org/10.1364/OE.16.019152

