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We introduce universally robust sequences for dynamical decoupling, which simultaneously compensate
pulse imperfections and the detrimental effect of a dephasing environment to an arbitrary order, work with any
pulse shape, and improve performance for any initial condition. Moreover, the number of pulses in a sequence
grows only linearly with the order of error compensation. Our sequences outperform the state-of-the-art
robust sequences for dynamical decoupling. Beyond the theoretical proposal, we also present convincing
experimental data for dynamical decoupling of atomic coherences in a solid-state optical memory.
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Introduction.—Quantum technologies are increasingly
important nowadays for a multitude of applications in
sensing, processing, and communication of information.
Nevertheless, protection of quantum systems from unwanted
interactionswith the environment remains amajor challenge.
Dynamical decoupling (DD) is a widely used approach that
aims to do this by nullifying the average effect of the
unwanted qubit-environment coupling through the applica-
tion of appropriate sequences of pulses [1–4].
Most DD schemes focus on dephasing processes because

they have maximum contribution to information loss in
many systems, e.g., in nuclear magnetic resonance and
quantum information [5,6]. Then, the major limitation to
DD are pulse imperfections whose impact often exceeds
the effect of the perturbations from the environment [6–8].
Some sequences, e.g., the widely used Carr-Purcell-
Meiboom-Gill (CPMG) sequence, work efficiently for
specific quantum states only [6,9]. Robust sequences for
any state with limited error compensation have been
demonstrated experimentally, e.g., XY4 (PDD), Knill
DD (KDD) [6]. Composite pulses, designed for static
errors, were also recently shown to be robust to time-
dependent non-Markovian noise up to a noise frequency
threshold [10]. A common feature of most robust DD
sequences so far is pulse error compensation in one or two
parameters only (flip angle error, detuning). High fidelity
error compensation has been proposed, e.g., by nesting of
sequences, but only at the price of a very fast growth in the
number of pulses [6].
In this Letter, we describe a general theoretical procedure

to derive universally robust (UR) DD sequences that
compensate pulse imperfections in any experimental
parameter (e.g., variations of pulse shapes or intensities)
and the effect of a slowly changing environment to an
arbitrary order in the permitted error. We note that the term
universal is applied for pulse errors. The UR sequences
work at high efficiency for any initial condition. The
number of pulses for higher order error compensation

grows only linearly with the order of the residual error.
The concept works for arbitrary pulse shapes. Our only
assumptions are identical pulses in a sequence and a
correlation time of the environment that is longer than
the sequence duration—in order to maintain appropriate
phase relations between the pulses. In the following, we
will describe our theoretical approach and present con-
vincing data from a demonstration experiment with rel-
evance to applications in quantum information technology,
i.e., DD of atomic coherences for coherent optical data
storage in a Pr3þ∶Y2SiO5 crystal (termed Pr:YSO). As our
numerical simulations and the experimental data show, the
UR sequences outperform the best robust DD sequences
available so far.
The system.—We consider a system, consisting of an

ensemble of noninteracting two-state systems in a dephas-
ing environment, and assume we have no control of the
environment. Similarly to previous work on robust DD
sequences [11], we use a semiclassical approximation,
where the free evolution Hamiltonian of a qubit includes
an effective time-dependent Hamiltonian due to the system-
environment interaction [12,13]. This is the case, e.g., when
the changes in the environment are slow, compared to the
delay between the pulses in the DD sequences [11]. Such
systems are encountered in many solid-state spin systems,
e.g., doped solids, electron spins in diamond, electron spins
in quantum dots, etc.

We denote a qubit transition frequency as ωðkÞ
S ðtÞ ¼

ω̄S þ ΔðkÞ þ ϵðtÞ, where ω̄S is the center frequency of the
ensemble, and ΔðkÞ is the detuning of kth qubit due to a
slowly changing qubit-environment interaction, e.g., inho-
mogeneous broadening; ϵðtÞ is a stochastic term due to a
fast qubit-environment interaction, which cannot be refo-
cused by DD and its effect is simply an additional
exponential decay of the coherence—we omit it further
on. The assumption for constantΔðkÞ during a DD sequence
becomes feasible by shortening the time between the
pulses. This was the inspiration for the introduction of
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the widely used CPMG sequence, following the seminal
work of Hahn [9,14]. Previous experiments have demon-
strated that these are reasonable assumptions for compari-
son of robust DD sequences [11].
The Hamiltonian of the system in a rotating frame at an

angular frequency ω̄S is ĤfðtÞ ¼ ΔðkÞŜz (Ŝz ¼ ℏσz=2,
ℏ ¼ 1) during free evolution and ĤðtÞ ¼ ĤfðtÞ þ ĤpðtÞ
during a pulse. The latter depends on qubit frequency
offset ΔðkÞ, the (time-dependent) detuning of the applied
field ΔðpÞðtÞ≡ ω̄S − ωðpÞðtÞ and the Rabi frequency
ΩðtÞ ¼ −d ·EðtÞ=ℏ. We make no assumptions about
ΩðtÞ and ΔðpÞðtÞ, which may vary for the different qubits.
The dynamics of a qubit due to a pulse is described

by a propagator Upulse, which connects the density matrices

of the system at the initial and final times ti and tf : ρðtfÞ ¼
UpulseρðtiÞU†

pulse and can be parametrized [15] as

Upulseðα; β; pÞ ¼
" ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p

eiα
ffiffiffiffi
p

p
eiβ

− ffiffiffiffi
p

p
e−iβ

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
e−iα

#
; ð1Þ

where p is the transition probability, induced by a pulse; α,
β are (unknown) phases. A phase shift ϕ in the Rabi
frequency, ΩðtÞ → ΩðtÞeiϕ, is imprinted in Upulse as β →
β þ ϕ [15–17]. The phase ϕ is assumed the same for every
qubit (unlike β), which is usually experimentally feasible.
DD sequences traditionally consist of time-separated

pulses [9,14]. We consider DD with equal pulse separation
(see Fig. 1), which was shown to be preferable for most
types of environment [18]. The propagator for a single cycle,
defined as free evolution—(phased) pulsed excitation—
free evolution, is UðϕÞ ¼ Upulseðαþ δ; β þ ϕ; pÞ, where
δ≡ −ΔðkÞτ=2 accounts for the effect of the environment
during free evolution. The parameters α, β, δ, p may vary
for the different qubits and are affected by many factors,
e.g., field inhomogeneities, effect of the environment. The
propagator of a DD sequence of n free evolution-pulse-free
evolution cycles, where the kth pulse is phase shifted by ϕk

(see Fig. 1), takes the form UðnÞ ¼ UðϕnÞ…Uðϕ2ÞUðϕ1Þ,
where ϕ1;…;ϕn are free control parameters. The DD

sequence can be repeated N times for decoupling during
the whole storage time.
Derivation of the UR DD sequences.—Our goal is to

preserve an arbitrary qubit state, which can be achieved (up
to a phase shift) if a DD sequence has an even number of
(phased) pulses, and each performs complete population
inversion, i.e., p ¼ 1 (see Supplemental Material at [19]).
Thus, we define our target propagator as U0¼UðnÞðp¼1Þ.
We choose the phases ϕ1;…;ϕn, so that systematic errors
in a pulse cycle are compensated by the other cycles in a
DD sequence, similarly to the technique of composite
pulses [22]. The DD sequence performance is characterized
with the fidelity [6]

F ¼ 1

2
jTrðU†

0U
ðnÞÞj≡ 1 − εn; ð2Þ

where εn is the fidelity error of a DD sequence of n cycles.
In order to minimize εn, we perform a Taylor

expansion with respect to the transition probability p at
p ¼ 1 (ideal π pulse) and use the control parameters ϕk to
nullify the series coefficients for every α, δ, and β up to
the largest possible order of p. The phase ϕ1 has a
physical meaning only with respect to the (unknown)
phase of the initial coherence, so we take ϕ1 ¼ 0 without
loss of generality. In the case of two cycles, e.g., the
well-known CPMG sequence, the fidelity error is
ε2 ¼ 2ð1 − pÞ cos2 ðαþ δ − ϕ2=2Þ. Thus, error compensa-
tion is not possible by a proper choice of ϕ2, except for a
particular αþ δ or for certain initial states [6]. However,
error compensation for an arbitrary initial state becomes
possible with four or a higher even number of cycles.
We derive a general formula for the phases of a UR

sequence of n pulses (see also Supplemental Material
at [19])

ϕðnÞ
k ¼ ðk − 1Þðk − 2Þ

2
ΦðnÞ þ ðk − 1Þϕ2; ð3aÞ

Φð4mÞ ¼ � π

m
; Φð4mþ2Þ ¼ � 2mπ

2mþ 1
: ð3bÞ

FIG. 1. Schematic description of a DD sequence with n equally
separated phased pulses. A single cycle free evolution-pulse-free
evolution lies within the dashed lines. The proper choice of the
relative phases of the pulses compensates both pulse errors and
dephasing due to the environment. The DD sequence is repeated
N times during the storage time; the pulse shape can be arbitrary.

TABLE I. Phases of the symmetric universal rephasing (UR)
DD sequences with n cycles (indicated by the number in the
label), based on Eq. (3). Each phase is defined modulo 2π.

Sequence Phases ΦðnÞ

UR4 ð0; 1; 1; 0Þπ π
UR6 �ð0; 2; 0; 0; 2; 0Þπ=3 �2π=3
UR8 �ð0; 1; 3; 2; 2; 3; 1; 0Þπ=2 �π=2
UR10 �ð0; 4; 2; 4; 0; 0; 4; 2; 4; 0Þπ=5 �4π=5
UR12 �ð0; 1; 3; 0; 4; 3; 3; 4; 0; 3; 1; 0Þπ=3 �π=3
UR14 �ð0;6;4;8;4;6;0;0;6;4;8;4;6;0Þπ=7 �6π=7
UR16 �ð0;1;3;6;2;7;5;4;4;5;7;2;6;3;1;0Þπ=4 �π=4
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The addition of an arbitrary phase ~ϕ to all phases does
not affect the overall performance, while ϕ2 can be chosen
at will to perform an arbitrarily accurate phase gate
exp ðiχŜzÞ, χ ¼ nðϕ2 − ~ϕÞ=2 without additional pulses.
We note that for n ¼ 4, ϕ2 ¼ π=2, we obtain the well-
known XY4 sequence [6]. The simplest symmetric UR DD
sequences with a target U0 ¼ ð−1Þn=2I are given in Table I.
It is notable that the order of error compensation increases
linearly with the number of cycles n:

εn ¼ 2ð1 − pÞn=2sin2
�
n
2
ðαþ δ − π=2 − ϕ2=2Þ

�
: ð4Þ

This is the central result of this Letter. Arbitrarily accurate
error compensation is achievable even for small single
pulse transition probability for any pulse shape, e.g., also
for chirped pulses [23]; the linear rise in the number of
pulses for higher order error compensation is superior to
traditional techniques, e.g., nesting of sequences [6]; the
analytic formula for UR DD allows for fine-tuning to the
specific pulse errors and environment.

Figure 2 demonstrates the theoretical fidelity of several
DD sequences against frequency detuning and Rabi fre-
quency errors for a single qubit. The applied rectangular
pulses differ only in their phases, and each sequence is
repeated to ensure a total of 120 pulses (e.g., UR10 is
repeated N ¼ 12 times). The parameter range corresponds
to the experimental Fig. 3. The simulations show that the
fidelity of the CPMG sequence is very sensitive to pulse
errors, while the robustness of the UR sequences increases
quickly with the sequence order. It is remarkable that the
fidelity error εn for UR20 stays below the 10−4 quantum
information benchmark even with amplitude errors and
frequency offset of nearly 40% of the Rabi frequency. We
note that the ultrahigh fidelity range expands even more
with shorter pulse separation and higher order sequences.
Finally, UR20 is more robust than the current state-of-the-
art sequence for pulse error compensation KDD in XY4
(also of 20 pulses) [6]. This is not surprising since the
fidelity error ε20 ∼ ð1 − pÞ6 for KDD in XY4 is larger than
ε20 ∼ ð1 − pÞ10 for UR20 (p → 1).

FIG. 2. Numerically simulated fidelity F vs detuning and
amplitude errors for DD sequences from Table I and [6] for a
total of 120 cycles. The DD pulses are rectangular with a duration
of T ¼ π=Ω0 and time separation of τ ¼ 4T.

FIG. 3. Experimentally measured ratio of light storage effi-
ciency for DD sequences from Table I and [6], and the maximum
efficiency of the CPMG sequence. A total of 120 rectangular
pulses with duration T ¼ 10 μs and time separation τ ¼ 40 μs
were applied; storage time is 6 ms. The performance of longer
DD sequences is expectedly reduced by decoherence as the
sequence duration approaches T2 ¼ 500 μs.
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Experimental demonstration.—We experimentally veri-
fied the performance of the UR sequences for DD of
atomic coherences for optical data storage. In the experi-
ment, we generate a coherence on a radio frequency (rf)
transition between two inhomogeneously broadened
hyperfine levels of the Pr:YSO crystal. The coherence
is prepared and read-out by electromagnetically induced
transparency (EIT) [21]. EIT in a doped solid was already
applied to drive an optical memory with long storage
times [24] or high storage efficiency [25]. The concept
and experimental setup for (single-pass) EIT light
storage are described in Supplemental Material at [19]
and [25].
In such a coherent optical memory, it is crucial to reverse

the effect of dephasing of atomic coherences during storage
due to inhomogeneous broadening of the hyperfine levels
(Tdeph ≈ 13 μs). Additionally, stochastic magnetic inter-
actions between the dopant ions and the host matrix lead
to a decoherence time of T2 ≈ 500 μs. DD is ideally
implemented with instantaneous resonant π pulses, which
are not feasible in our experiment due to inhomogeneous
broadening and the spatial inhomogeneity of the rf field.
In order to permit a much broader operation bandwidth,
we replace the identical pulses in the widely used CPMG
sequence [9] with phased pulses. In all experiments, the
optical “write” and “read” sequences were kept the same,
while the DD sequences with the same pulse separation
have identical duty cycle (total irradiation time divided by
total time) for a fair comparison; therefore, the energy of

the retrieved signal measures the DD efficiency (see also
Supplemental Material at [19]).
In the first experiment (Fig. 3), we compare the effi-

ciency of several DD sequences for a storage time of 6 ms,
i.e., much longer than T2 ≈ 500 μs. Matching to the
simulations in Fig. 2, we implement DD with 120 rec-
tangular rf pulses. We vary the Rabi frequency and the
detuning to obtain a 2D plot of the relative storage
efficiency. The experimental results confirm the theoretical
prediction that the efficiency increases with the UR order
until the longer sequences are significantly affected by
decoherence. We note that Figs. 2 and 3 are expected to
differ as the former simulates only the DD fidelity for a
single qubit in a constant environment. For example, the
CPMG sequence has a higher storage efficiency than XY4
in the experiment because it works very well for some
initial quantum states [6], i.e., some atoms in the ensemble.
However, applying the CPMG sequence with pulse errors
effectively projects the qubits on such states, thus making it
unsuitable for quantum storage. The UR sequences sig-
nificantly outperform the traditional sequences, e.g., the
efficiency of UR10 is about 75% higher than the CPMG
sequence. We also verified the superior performance of the
UR sequences for a pulse separation τ ¼ 15 μs and with
Gaussian pulses (see Supplemental Material at [19]).
In a second experiment, we compare DD efficiencies at

different storage times. Figure 4(a) also confirms the
theoretical prediction that the UR efficiency increases with
the sequence order. The highest efficiency is achieved with
UR16 for a pulse separation of τ ¼ 5 μs, while UR12 is
better for 40 μs. This is explained by the trade-off between
longer sequences that compensate pulse errors better and
shorter sequences that suffer less from decoherence. The
UR analytical formula and the fast improvement in error
compensation allow for fine-tuning of the optimal sequence
to the specific environment. Shorter (than 5 μs) pulse
separation and even continuous UR sequences are theo-
retically possible and should provide even better perfor-
mance. However, these were not possible in our
experimental setup. Figure 4(b) compares the performance

FIG. 4. Experimentally measured efficiency of stored light for
several DD sequences, defined in Table I and [6] for different
pulse separation. DD is performed with rectangular rf pulses with
a frequency of 10.2 MHz, duration of 10 μs and a Rabi frequency
Ω0 ≈ 2π 50 kHz, optimized for a maximum efficiency with the
CPMG sequence for a storage time of 100 μs. Note the
logarithmic scale on the time axis.

FIG. 5. Experimentally measured ratio of light storage effi-
ciency for DD sequences from Table I and [6]. Experimental
parameters are identical to Fig. 4, storage time is (approx-
imately) 6 ms.

PRL 118, 133202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

31 MARCH 2017

133202-4



of the UR16 and the state-of-the-art KDD in XY4 sequence
[6]. The experimental data show that UR16 performs
remarkably better than KDD in XY4. This is expected
from theory since UR16 has both higher order pulse error
compensation and less pulses. The improvement is less for
τ ¼ 40 μs as the duration of both sequences exceeds T2.
Figure 5 summarizes the experimental performance of

UR and other sequences [6] vs number of pulses n in a
sequence. The data confirm the UR superior performance
and the improvement of error compensation with n. The
optimal sequence changes with pulse separation due to the
trade-off between pulse errors and decoherence during a
sequence, which affects its error self-compensatory mecha-
nism [6]. The slight oscillation in UR efficiency is likely
due to higher-order effects for the particular time separa-
tion. Finally, we note that we also verified the superior
performance of the UR sequences in comparison to
composite pulses with the same duty cycle, e.g., U5a
and U5b [15].
Conclusion.—We theoretically developed and experi-

mentally demonstrated universally robust DD sequences,
which compensate systematic errors in any experimental
parameter and the effect of a slowly changing dephasing
environment to an arbitrary order for any pulse shape and
initial condition. The UR sequences require a linear growth
in the number of pulses for higher order error compensa-
tion, which is faster than traditional methods, e.g., nesting
of sequences. The only assumptions made are those of a
coherent evolution during the DD sequence (the correlation
time of the environment is longer than the sequence
duration) and identical phased pulses. We also experimen-
tally confirmed the superior performance of our UR
sequences for DD for coherent optical data storage in a
Pr:YSO crystal.
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