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We analytically investigate backreaction by a quantum scalar field on two rotating Bañados-Teitelboim-
Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we
explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find
that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a
reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the
formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a
superradiant instability. In the case of a naked singularity, we find that quantum effects lead to the formation
of a horizon that shields it, thus supporting evidence for the rôle of quantum mechanics as a cosmic censor
in nature.
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Introduction.—It is expected that most black holes
possess some rotation (e.g., [1,2]). The geometrical struc-
ture of rotating black hole space-times is a lot richer than
that of nonrotating black hole space-times. For example, in
Kerr space-time [i.e., a (3þ 1)-dimensional, rotating and
asymptotically flat black hole], there exists a region—the
ergosphere—“near” the event horizon where observers
cannot remain static: they must rotate in the same direction
as the black hole. There also exists a region separated from
the event horizon where an observer corotating with the
horizon must have a velocity greater than or equal to the
speed of light; the boundary of such a region is called
the speed-of-light surface. Inside a Kerr black hole, there is
also the so-called inner horizon, which is a Cauchy horizon
for data “outside” the black hole. Beyond the inner horizon
in the inward direction there exist closed null and timelike
geodesics. None of these regions (ergosphere, speed-of-
light surface, or inner horizon) exist in the nonrotating limit
of the Kerr geometry, a Schwarzschild black hole space-
time (although an inner horizon does exist for a charged
spherically symmetric—Reissner-Nordström—black hole).
The presence of the above regions has important con-

sequences for the physics of black holes, notably for their
stability properties. For example, the inner horizon of the

Reissner-Nordström solution is classically unstable [3,4]
(phenomenon of “mass inflation”). A similar feature occurs
in the Kerr geometry, where perturbations falling into the
black hole are expected to produce a divergent curvature at
the inner horizon [5–7]. The presence of the ergosphere in
Kerr, in its turn, leads to the Penrose process [8], with its
“collisional” variant [9], and to the phenomenon of super-
radiance [10,11], whereby matter—particles in the first
case and boson field waves in the second—falling into the
black hole may be used in order to extract rotational energy
from a black hole.
The speed-of-light surface also plays an important rôle

in the existence of superradiant modes. Superradiance in
general is the cause behind various classical instabilities of
black holes: under massive linear field perturbations [12],
when the black hole is surrounded by a mirror [13] (the so-
called “black hole bomb”) which encloses any part of the
region outside the speed-of-light surface [14], and when a
black hole lies in an anti–de Sitter (AdS) universe (i.e., a
universe with a negative cosmological constant) and is
sufficiently small so that there exists a speed-of-light
surface [15–17]. Quantum mechanically, the existence of
a speed-of-light surface seems [18,19] to be the reason why
one cannot define a state describing a rotating black hole in
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thermal equilibrium with its own quantum boson field
radiation [20,21]. One may define such a quantum state,
however, if one excludes the region of the space-time
beyond the speed-of-light surface by placing a mirror [14]
or, possibly, and more naturally, by placing the rotating
black hole in an AdS universe for a sufficiently large
cosmological constant [16]. We finally note that the ergo-
sphere can be present in a rotating space-time without an
event horizon (such as that of a star), in which case, it leads
to classical instabilities of the space-time [22] and to
quantum (Starobinskiı̆-Unruh) radiation [23].
It is of great interest to understand the fate of the stability

properties and rotating space-time regions in the presence of
quantum corrections. One possibility is to study the back-
reaction effects from quantum matter on these geometrical
regions of a rotating space-time. While such a study would
be technically very difficult in a Kerr black hole space-time
(whether or not placed inside a mirror or an AdS universe),
in this Letter, we undertake that study for a rotating black
hole in (2þ 1)-dimensions, the so-called rotating BTZ
(Bañados-Teitelboim-Zanelli) black hole [24]. This black
hole possesses inner (Cauchy) and outer (event) horizons
and an ergosphere but no speed-of-light surface; its Cauchy
horizon exhibits “mass inflation” [25,26]; its ergosphere
leads to a Penrose-like process [27]. A major simplification
in (2þ 1)-dimensions is the absence of propagating gravi-
tational degrees of freedom, which eliminates the need for
quantizing the gravitational field. Therefore, all quantum
corrections come from the “matter sector”.
In this Letter, we analytically solve the semiclassical

Einstein equations sourced by a conformally coupled and
massless quantum scalar field on a rotating BTZ space-
time. We obtain the quantum-backreacted metric and
investigate the quantum effects on the inner horizon, outer
horizon, and ergosphere, and investigate the possible
creation of a speed-of-light surface. To the best of our
knowledge, this is the first time that a quantum-backreacted
metric has been obtained for a rotating black hole space-
time [28]. Our results not only provide an insight into
backreaction effects that might take place for astrophysical
or particle-collider rotating black holes, but they can also
be of interest for the AdS/Conformal Field Theory (CFT)
conjectured correspondence (e.g., [31]). For example,
they can be used, following the analysis in [32], to test
AdS=CFT in Randall Sundrum braneworlds [33] by con-
structing a rotating black hole localized on an AdS3-brane
embedded in AdS4 [34].
Most of the construction needed to analyze the back-

reaction of the black hole geometry produced by quantum
fields can also be used to study the fate of a naked
singularity. This could shed light on Penrose’s cosmic
censorship hypothesis [8], which in its weaker version,
essentially states that, generically, no “naked” (i.e., not
covered by an event horizon) space-time singularities can
form in nature. In [30], we showed that quantum effects on

a static naked singularity in AdS3 lead to the formation of a
horizon that covers it, thus enforcing cosmic censorship. In
this Letter we confirm that quantum corrections continue to
provide a mechanism for cosmic censorship in the spinning
case as well. Therefore, this is not a peculiar feature of the
static geometry, but a more generic phenomenon.
Rotating BTZ geometry.—The rotating BTZ geometry is

obtained by identifying points in the universal covering
of anti–de Sitter space-time (CAdS3) by some spacelike
Killing vector field, corresponding to a generator of certain
global isometries of AdS3. Any open set of this geometry
is, therefore, indistinguishable from a portion of CAdS3.
The BTZ metric is given by [24,35]

ds2 ¼
�
M −

r2

l2

�
dt2 − Jdtdθ þ dr2

r2

l2 −M þ J2

4r2
þ r2dθ2;

ð1Þ
where t ∈ ð−∞;þ∞Þ, r ∈ ð0;∞Þ, and θ ∈ ½0; 2πÞ and the
cosmological constant is given by Λ ¼ −l−2. The BTZ
geometry corresponds to either a black hole or to a naked
singularity possessing [36] massM and angular momentum
J. The metric (1) is stationary and axially symmetric, with
corresponding Killing vectors ξ≡ ∂=∂t and ψ ≡ ∂=∂θ,
respectively.
In the case of the rotating BTZ black hole,Ml ≥ jJj (the

extremal case corresponding to the equality), the identi-
fication Killing field is a noncompact spacelike field—see
Eq. (6) below. The resulting black hole space-time pos-
sesses an inner (Cauchy) horizon at r ¼ r− ¼ ljα−j=2 and
an outer (event) horizon at r ¼ rþ ¼ lαþ=2, where

α� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ J

l

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M −

J
l

r
: ð2Þ

The inner horizon is classically unstable [25] in a similar
manner to that of Kerr or Reissner-Nordström space-times
[3,5,6]. Unlike Kerr, the 2þ 1 black hole possesses no
curvature singularities, but it does possess a causal singu-
larity at r ¼ 0: there are inextendible incomplete geodesics
that hit r ¼ 0 [35]. The Killing vector ξ is timelike for
r > rSL ≡

ffiffiffiffiffi
M

p
l, is null at r ¼ rSL, and is spacelike for

r ∈ ðrþ; rSLÞ. This means that no static observers can exist
for r < rSL. The hypersurface r ¼ rSL is hence called the
static limit surface, and the region r ∈ ðrþ; rSLÞ is called
the ergosphere. In its turn, the Killing vector χ ≡ ξþΩHψ,
where ΩH ¼ J=ð2r2þÞ is the angular velocity of the event
horizon, is the generator of the event horizon. The vector χ
is null at the event horizon and, in the nonextremal case,
is timelike everywhere outside. This means that, in the
nonextremal case, observers that rigidly rotate at the
angular velocity of the black hole can exist anywhere
outside the event horizon; i.e., there is no speed-of-light
surface. In the extremal case, on the other hand, the Killing
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vector χ is null everywhere on and outside the event
horizon.
For Ml ≤ −jJj, the metric (1) describes a conical

singularity, also obtained by an identification in CAdS3
by a spacelike Killing vector, which, in this case, is compact.
Note that Eq. (2) implies that, in this case, α� are both purely
imaginary: no horizon is present and the geometry is a true
naked singularity. In this geometry, ξ is always timelike, and
so there is no ergosphere. The extremal case corresponds to
maximal rotation, Ml ¼ −jJj.
Finally, we note that in the nonextremal cases,

jMjl > jJj, the classical solutions can be obtained by
boosting the corresponding static (J ¼ 0) black hole [37]
or conical solution [38].
Backreacted geometry.—The backreaction of quantum

matter onto the geometry can be calculated via the semi-
classical Einstein equations:

Gμν − l−2gμν ¼ πhTμνi: ð3Þ
Here, Gμν is the Einstein tensor for the quantum-
backreacted metric gμν, and hTμνi is the renormalized
expectation value of the stress-energy tensor (RSET) of
the matter field in some quantum state. The quantum state
is determined by imposing boundary conditions for the
field on the AdS boundary: the timelike hypersurface
r ¼ ∞. We note that the RSET is calculated on the classical
space-time, rather than on the quantum-backreacted one
(with metric gμν).
We shall consider a conformally coupled and massless

scalar field satisfying “transparent” boundary conditions on
the AdS boundary. Transparent boundary conditions cor-
respond to decomposing the scalar field using modes which
are smooth on the entire Einstein static universe [39,40].
We calculate the vacuum expectation value for the RSETof
the scalar field in a state corresponding to transparent
boundary conditions in the following way. We consider the
BTZ geometry as obtained from the appropriate identifi-
cation of points in CAdS3 under an element of the Lorentz
group. We then apply the method of images to find the two-
point function of the field equation in the BTZ geometry
from that in CAdS3 with the appropriate identification. We
then obtain the RSET [41] from the two-point function in
the standard way.
We choose the following form for a general, stationary,

and axisymmetric metric,

ds2 ¼ ð−e2abþ r2k2Þdt2 þ 2r2kdtdθ þ dr2

b
þ r2dθ2;

ð4Þ
for some functions aðrÞ, bðrÞ, and kðrÞ, which are given
by their classical values plus corrections of order OðlPÞ,
denoted by a1, b1, and k1, respectively. The (potential)
horizons are determined by the zeros of bðrÞ which, to
order lP, is bðrÞ ¼ ðr2=l2Þ −M þ ðJ2=4r2Þ þ lPb1ðrÞ.

Next, we solve the semiclassical Einstein equations (3):
in the left hand side, we insert the metric ansatz Eq. (4) and
expand toOðlPÞ; in the right hand side, we insert the RSET
derived as indicated above. In order to integrate Einstein’s
equations, we fix the coordinate choice so that the values at
infinity of the (rescaled) lapse and shift functions are equal
to, respectively, 1 and 0, following the choice made in [35]
for the classical unperturbed metric. The remaining two
integration constants are the mass M and angular momen-
tum J, which, in order to make a significant comparison,
we assume to have the same values as in the unperturbed
solution. In this way, we find analytic expressions for a1,
b1, and k1, which we give elsewhere [41]. In particular, we
find that, at large distances, the quantum corrections decay
as: a1 ¼ Oðr−3Þ; b1 ¼ Oðr−1Þ; k1 ¼ Oðr−3Þ. In the static
limit (J ¼ 0, α− ¼ 0, αþ ¼ 2

ffiffiffiffiffi
M

p
), we recover the known

results [29]: a ¼ 0, b1 ¼ Oð1=rÞ, k ¼ 0. Specifically, we
find the metric coefficient b1ðrÞ to be of the form [41]:

b1 ¼ −
XN
n¼1

FnðrÞ
dnðrÞ3=2

; ð5Þ

where N ¼ ∞ in the black hole case and is finite in the
naked singularity case. Here, FnðrÞ is a function that for
large r, grows as r2, and dnðrÞ is the squared geodesic
distance between a point and its nth image under the
identification in CAdS3; it can be written as dnðrÞ ¼
Dnr2 þ En for some coefficients Dn and En [41].
Horizons and other regions of the black hole

geometry.—We next investigate various geometrical
regions of interest of the backreacted rotating black hole
metric. For the black hole, the upper summation bound
N ¼ ∞, and for fixed r > r−, where dnðrÞ > 0, this is a
converging geometric series [42]. The metric perturbations
diverge for dnðrnÞ ¼ 0, which occurs for certain discrete
radii satisfying 0 < rn < r−. As n → þ∞, rn → r−, and
therefore, the inner horizon becomes a surface with an
accumulation of points where dn ¼ 0. This is a direct
consequence of the identification that produces the spin-
ning black hole. The Killing vector that is employed in this
identification is [43]

ζðrþ; r−Þ ¼ rþJ12 − r−J03; ð6Þ

whose norm, ζ · ζ ¼ r2þ − r2−, is positive for a nonextremal
black hole. The spacelike vector ζðrþ; r−Þ, however, can
identify two distinct points connected by a null geodesic
in the CAdS3, turning this curve into a closed null solution
of the geodesic equation in the black hole geometry. (We
note that this curve is not everywhere future directed, as
opposed to the closed timelike curves that would be
produced if the identification in CAdS3 was made with
a timelike Killing vector: those curves would be every-
where future directed or everywhere past directed). The
resulting null closed curve extends from infinity to some
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radius rmin inside the inner horizon and back to infinity.
This means that this geodesic is not a serious issue in
classical physics because no real massless particle can
follow this trajectory crossing both horizons twice
[27,44]. Virtual quantum mechanical particles, however,
do not respect causality, and we find that this gives a
divergent contribution to the RSET coming from a pole
in the propagator at a series of circles approaching r−
from the inside. This accumulation of poles produces
an essential singularity at r−. We find [41] that the
Kretschmann invariant picks up a divergent contribution
proportional to the square of the RSET. Therefore, the
geometry indeed develops a curvature singularity at r−
and, consequently, the semiclassical approximation can
only be trusted for r > r−. Although both the quantum
backreaction found here and the classical mass inflation
found in [25,26] yield a diverging (local) stress energy at
r−, this singularity is not of the same nature in the two
cases (in mass inflation, it is due to infinitely blueshifted
perturbations generated in the external region); plus,
here, the Kretschmann scalar diverges, whereas for mass
inflation in BTZ, it does not.
The backreacted radius of the outer horizon is given by

the largest positive root of bðrÞ ¼ 0. Working at OðlPÞ, the
corrected event horizon radius (in the nonextremal case) is

of the form rðqÞþ ¼ rþð1þ lPxþÞ, where

xþ ≡ −
2b1ðrþÞ
α2þ − α2−

; ð7Þ

and b1ðrþÞ is negative. Therefore, the event horizon grows,
rðqÞþ > rþ. We note that the expression for rðqÞþ via Eq. (7) is
only valid for lP ≪ ðrþ − r−Þ. In the opposite regime,
0 < ðrþ − r−Þ ≪ lP, the correction to the horizon radius
has an expression different from Eq. (7) [41]. In the
extremal case, rþ ¼ r−, and for r2þ ≫ l2lPb1ðrþÞ, this

expression takes the form rðqÞþ ¼ rþð1þ
ffiffiffiffi
lP

p
yþÞ, where

yþ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−b1ðrþÞ

2M

r
; ð8Þ

and

b1ðrþÞ ¼ −
1

lπ2
X∞
n¼1

1

n2 sinhðnπαþ
2
Þ : ð9Þ

This limit coincides with the corrected rðqÞþ for the extremal
solution in the semiclassical approximation.
To find the boundary of the quantum-corrected ergo-

sphere, we need to solve gtt ¼ −e2aðrÞbðrÞ þ r2k2ðrÞ ¼ 0,
which we solve to OðlPÞ. We analytically find that the sign
of the quantum correction to the radius of the static limit
surface is always positive.

We can also compute the quantum-corrected angular

velocity of the black hole: ΩðqÞ
H ¼ −ðgtθ=gθθÞjrþ ¼ −kðrþÞ.

We find numerical evidence that ΩH −ΩðqÞ
H is always

positive. We now turn to investigating the speed-of-

light surface. The Killing vector, χðqÞμ ¼ ξμ þ ΩðqÞ
H ψμ ¼

ð1; 0;ΩðqÞ
H Þ, has norm gμνχðqÞμχðqÞν ¼ −e2abþ r2k2þ

2r2kΩðqÞ
H þ r2ΩðqÞ2

H . The Killing vector χðqÞμ, in the non-
extremal case, is timelike in the near-horizon region and
becomes null on the horizon. Near infinity, we find

that χðqÞ2 ∼ −ðr2=l2Þð1 − l2ΩðqÞ2
H Þ. The condition for

χðqÞ to be spacelike and (likely) for the space-time to

develop a superradiant instability is lΩðqÞ
H ¼ l½ðJ=2rðqÞ2þ Þ−

lPk1ðrþÞ� > 1. We find that lΩðqÞ
H < lΩH ≤ 1 (the equality

being realized in the extremal case). We conclude that the
quantum effects do not appear to change the superradiant-
stability property of the classical solutions.
Another important (and delicate) case is the extremal

limit αþ → α−. In this case, the identification that yields the
extremal black hole, ζext ¼ rþðJ01 − J23Þ þ ðJ12 þ J03 þ
J02 − J13Þ=2, is not obtained as the limit rþ → r− of (6)
and therefore, it is not immediately obvious what happens
in this case. However, we obtain that the extremal limit of
the RSET in the nonextremal black hole is equal to the
RSET in the extremal black hole; the backreacted metrics
share the same feature. Therefore, our results are physically
meaningful for nonextremal black holes all the way down
to the extremal limit.
Naked singularity and cosmic censorship.—For the

nonextremal conical singularity (Ml < −jJj ≤ 0), the
upper summation bound N is finite, and therefore, con-
vergence is not an issue. In this case, the quantum
correction b1 possesses at least one pole at a finite radius
where b1 → −∞. This implies that the quantum corrections
always generate an event horizon that covers the conical
singularity at r ¼ 0. We note, however, that for finite values
of (M, J), the formed horizon has size OðlpÞ, and our
results are at most indicative (higher-order quantum cor-
rections are equally important for establishing its presence).
Instead, for masses just below M ¼ 0, and as in the
static case, rþ ¼ Oðl1=3p Þ ≫ OðlpÞ appears to be physically
meaningful [30]. An alternative way of seeing this is by
noting that the metric components, as well as the correc-
tions for a, b, and k, are continuous and analytic in the
M-J plane for jJj < jMjl. Since in the static case, the
quantum corrections give rise to a horizon at a finite radius
[30], the addition of angular momentum produces a
continuous change in this radius, and therefore, cosmic
censorship continues to be upheld when angular momen-
tum is switched on [41].
Discussion.—We have established that the presence of

a conformally coupled quantum scalar field on a rotating
BTZ black hole leads to: (1) the event horizon growing
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(rðqÞþ > rþ), (2) the radius of the static limit surface

growing (rðqÞSL > rSL), (3) the angular velocity diminishing

(ΩðqÞ
H < ΩH), and (4) no evidence that a speed-of-light

surface forms. In particular, in the extremal case, the
generator of the horizon goes from being null to timelike
everywhere outside the horizon, and so, in a sense, the
quantum corrections take the solutions away from
extremality.
The perturbative correction shows the formation of a

singularity at the inner horizon, which can be interpreted as
an instability due to the existence of a curvature singularity
there. In the extreme case, the event horizon also grows and
the curvature singularity still forms inside so that the black
hole can no longer be called “extremal”.
Strictly speaking, however, the instability at r− signals a

breakdown of the linear approximation itself, and therefore,
any statement about the fate of the geometry there can be
viewed, at most, as an indicative suggestion.
Nevertheless, it can also be argued that the singularity of

the RSET is not a perturbative approximation but an exact
result due to the existence of closed null curves (which are
not everywhere future directed or past directed) in the
background geometry. Therefore, the formation of a barrier
of infinite energy is a real issue that cannot be dismissed on
the grounds that the right hand side of (3) blows up, even if
this equation could not provide an expression for the metric
in the neighborhood of r−. As a parallel, we note that, in the
case of Kerr, Ref. [7] directly links a classical instability of
the region r < r− under linear field perturbations to the
existence of closed-timelike curves in that region.
The only sure way of learning about the spacetime

geometry near the inner horizon would be to solve the
coupled system (3) exactly, in which the two-point function
and the RSET are computed in the corrected geometry. In
the absence of such a scheme, the best one could achieve is

a perturbative procedure where the corrected hTð1Þ
μν i is the

input to obtain a first corrected metric, gð1Þμν , using (3). Next,
this metric could be used to compute a new corrected stress-

energy tensor, hTð2Þ
μν i, etc.

In the iterative procedure outlined above, there is no need
to worry about quantum gravity effects for there are no
gravitons in 2þ 1 dimensions, and therefore, there are no
gravitational loop corrections. This is a significant differ-
ence with respect to the 3þ 1 case, where quantum gravity
corrections cannot be consistently ignored.
For lM < −jJj (and possibly for lM ¼ −jJj as well),

the classical naked singularity dresses up with a horizon
produced by quantum effects, as in the static case. We
conclude that quantum mechanics provides a mechanism
for cosmic censorship for spinning as well as for static
conical singularities.
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