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We present a new scenario for generating the baryon asymmetry of the Universe that is induced by a
Nambu-Goldstone (NG) boson. The shift symmetry naturally controls the operators in the theory while
allowing the NG boson to couple to the spacetime geometry as well as to the baryons. The cosmological
background thus sources a coherent motion of the NG boson, which leads to baryogenesis. Good
candidates of the baryon-generating NG boson are the QCD axion and axionlike fields. In these cases, the
axion induces baryogenesis in the early Universe and can also serve as dark matter in the late Universe.
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Introduction.—The excess of matter over antimatter in
our Universe is crucial for our very existence and is well
supported by various observations. In particular, measure-
ments of the cosmic microwave background (CMB) give
the ratio between the baryons and the entropy of the
Universe as nB=s ≈ 8.6 × 10−11 [1]. However, the origin
of this baryon asymmetry still remains unexplained.
In this Letter, we present a natural framework for

creating the baryon asymmetry by a Nambu-Goldstone
(NG) boson of a spontaneously broken symmetry which we
need not specify. The guiding principle here is the shift
symmetry of the NG boson or an approximate one for a
pseudo-Nambu-Goldstone (pNG) boson. We argue that
a NG boson coupled to various forces through shift-
symmetric operators naturally comes equipped with the
basic ingredients for a successful baryogenesis.
From the point of viewof shift symmetry, linear couplings

of a NG boson to total derivatives, such as to topological
terms, are not forbidden. Thus, with gauge fields, a NG
boson can acquire dimension-five operators of the form
ϕF ~F. In particular, with SU(2) gauge fields, such a term
gives rise, through the anomaly equation, to a coupling to the
divergence of the baryon current, i.e., ϕ∇μj

μ
B.

On the other hand, gravity also provides a shift-
symmetric mass-dimension-five operator ϕG, with
G ¼ R2 − 4RμνRμν þ RμνρσRμνρσ being the topological
Gauss-Bonnet term. In an expanding universe, the
Gauss-Bonnet coupling yields an effectively linear poten-
tial for the massless NG boson and sources a coherent time
derivative of the NG condensate. This, through its coupling
to the baryon current, shifts the spectrum of baryons
relative to that of antibaryons and, therefore, allows baryo-
genesis even in thermal equilibrium when baryon number
nonconserving processes occur rapidly. In other words, the
NG boson mediates the effect of the spontaneous breaking
of Lorentz invariance in an expanding universe to a shift in
the baryon-antibaryon spectra.
We will also show that this scenario can be realized with

the QCD axion, in which case the axion provides the

baryon asymmetry and dark matter in our Universe, as well
as solve the strong CP problem.
Although the mechanism of generating the baryons by the

spontaneous breaking of Lorentz invariance (or CPT sym-
metry [2]) has been investigated in the past, our scenario is
quite distinct from the previous studies. “Spontaneous baryo-
genesis” [3] is driven by amassive scalar derivatively coupled
to the baryon current, with a mass typically as large as
m≳ 105 GeV [4,5]. However, such a scalar condensate can
ruin the subsequent cosmological expansion history.
Moreover, the spatial fluctuation of the scalar seeded during
inflation produces baryon isocurvature perturbations [6],
which are tightly constrained from CMB measurements.
These observations constrain the model parameters to lie
within a rather narrow window [5]. On the other hand, in our
scenario the (p)NG boson is (nearly) massless. The small
massmakes the boson long lived and even allows the baryon-
generating pNG boson to play the role of dark matter. The
shift symmetry further suppresses the baryon isocurvature
much below the observational bounds.
We should also remark that the gravitational background

playing an important role in our scenario is reminiscent of
“gravitational baryogenesis” [7], which invokes a deriva-
tive coupling between the Ricci scalar and the current,
ð∂μRÞjμB. Such a term seems somewhat ad hoc, in the sense
that gravity is assumed to distinguish between matter and
antimatter; however, it might arise with the aid of medi-
ators. Phenomenologically, gravitational baryogenesis typ-
ically requires a quite high cosmic temperature, and also a
trace anomaly for the energy-momentum tensor in order to
have a nonvanishing ∂tR in a radiation-dominated universe.
In contrast, the cosmic temperature in our scenario can be
lowered due to the direct coupling between the NG boson
and the baryon current. Furthermore, since G does not
vanish during radiation domination, our scenario need not
rely on trace anomalies.
Let us also note the crucial difference with the model of

Ref. [8], which considered a coupling ð∂μGÞjμB. Such a term
introduces higher derivative terms in the equations of

PRL 118, 131101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

31 MARCH 2017

0031-9007=17=118(13)=131101(5) 131101-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.118.131101
http://dx.doi.org/10.1103/PhysRevLett.118.131101
http://dx.doi.org/10.1103/PhysRevLett.118.131101
http://dx.doi.org/10.1103/PhysRevLett.118.131101


motion which can lead to ghost instabilities. On the other
hand, the ϕG coupling of the NG boson does not yield
higher derivatives and thus does not introduce extra degrees
of freedom except for ϕ itself.
Baryogenesis with a NG boson.—Following the above

arguments, we consider a theory of a shift-symmetric NG
scalar ϕ linearly coupled to the divergence of the baryon
current, as well as to the Gauss-Bonnet term, described by
the Lagrangian

Lffiffiffiffiffiffi−gp ¼ M2
p

2
R −

1

2
∂μϕ∂μϕþ ϕ

f
∇μj

μ
B þ ϕ

M
Gþ � � � : ð1Þ

Here f and M are mass scales suppressing the dimension-
five operators, and ∇μ is a covariant derivative. We have
specified the relative sign of the two coupling terms for
simplicity; this sign at the end determines whether baryons
or antibaryons are created.
The derivative coupling to the baryon current can

originate from the anomalous couplings to the SU(2) gauge
fields (in such a case, the coupling term is effective when
sphalerons are in equilibrium [9]); alternatively, the term
could directly be generated upon spontaneous symmetry
breaking, as in the example of Ref. [10]. The gravitational
coupling may also arise from the symmetry breaking, as in
this case M would be naturally associated to the coherence
length of the NG condensate.
TheNGbosonmay further couple to the lepton current, and

then the produced lepton asymmetry can later be converted to
the baryons; for the purpose of our discussion, it suffices to
just display the baryon current. Regarding gravity, a mass-
dimension-five Chern-Simons coupling ϕR ~R also preserves
the shift symmetryofϕ [11]; however,we omit this termsince
R ~R vanishes in a Friedmann-Robertson-Walker (FRW) uni-
verse. Purely from the point of view of shift symmetry, there
can also be ϕ∇2R or terms equivalent to this up to total
derivatives. However, such terms introduce ghostly extra
degrees of freedom, and thus we do not expect them to result
from a symmetry breaking of a stable theory [12].
Shift-symmetric operators other than those shown are

contained in the dots in (1). We consider them to have
smaller effects on the ϕ dynamics compared to ϕG=M,
either because the coupled nongravitational fields are not
expected to have large vacuum expectation values, or the
operators have mass dimensions higher than five. A pNG ϕ
can also obtain a (possibly temperature-dependent) poten-
tial from some nonperturbative effects. For the moment, we
assume such a potential to be negligible during baryo-
genesis, until later when we discuss the possibility of ϕ
being an axion. The Lagrangian of matter fields other than
ϕ is also included in the dots.
Varying the Lagrangian (1) in terms of gμν and dropping

total derivatives gives the Einstein equation (if jμB is a
fermion current, one should instead use vierbeins; however,
this actually does not affect the results [5])

M2
pGμν¼Tϕ

ðμνÞ þTG
ðμνÞ þTdots

ðμνÞ;

Tϕ
μν¼gμν

�
−
1

2
∂ρϕ∂ρϕ−

∂ρϕ

f
jρB

�

þ∂μϕ∂νϕþ2
∂μϕ

f
jBν;

TG
μν¼

4

M
ðR∇μ∇νϕ−gμνR∇ρ∇ρϕþ2Rμν∇ρ∇ρϕ

−4Rμ
ρ∇ρ∇νϕþ2gμνRρσ∇ρ∇σϕ−2Rμ

ρ
ν
σ∇ρ∇σϕÞ:

ð2Þ

Here TðμνÞ ¼ 1
2
ðTμν þ TνμÞ, and Tdots

ðμνÞ represents the con-

tributions from the dots in (1). We also used that 1
2
Ggμν −

2RRμν þ 4Rμ
ρRνρ þ 4RρσRρμσν − 2RρστμRρστ

ν vanishes in
four spacetime dimensions as a consequence of the
generalized Gauss-Bonnet theorem.
Considering a flat FRW universe, ds2 ¼ −dt2þ

aðtÞ2dx2, the Gauss-Bonnet term is expressed in terms
of the Hubble rate H ¼ _a=a (an overdot denotes a
derivative in terms of the cosmological time t) as

G ¼ 24ðH4 þH2 _HÞ: ð3Þ
Focusing on the homogeneous mode of the NG scalar,
ϕ ¼ ϕðtÞ, and ignoring the spatial components of the
baryon current, the Friedmann equation [i.e., (0,0) compo-
nent of the Einstein equation (2)] reads

3M2
pH2 ¼

_ϕ2

2
−

_ϕj0B
f

−
24 _ϕH3

M
þ Tdots

00 : ð4Þ

We suppose the right-hand side to be dominated by Tdots
00

and that ϕ has a negligible effect on the cosmological
expansion; we will evaluate this condition later on.
The equation of motion of ϕ that follows from the terms

shown in (1) is

0 ¼ ∇μ∇μϕþ∇μj
μ
B

f
þ G
M

ð5Þ

¼ −
1

a3
d
dt

�
a3
�
_ϕ −

j0B
f
− 8

H3

M

��
: ð6Þ

Neglecting for the moment the term with the baryon
current, the velocity of the scalar is obtained as

_ϕ ¼ 8
H3

M
þ const × a−3: ð7Þ

On the right-hand side, during inflation when H is nearly
constant, the second term is expected to become negligibly
tiny compared to the first one. After inflation,H redshifts as
a−2 during radiation domination and as a−3=2 during matter
domination; hence, the second term grows relative to the
first. Which term dominates during baryogenesis is set by
the initial condition of _ϕ, which in turn is determined by the
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details of spontaneous symmetry breaking. Here, for sim-
plicity, we assume that the two terms are comparable in
magnitude at the beginning of inflation; then one can easily
check that, even if the duration of inflation is just enough to
solve the horizon problem, the first term dominates over the
second throughout the postinflationary era until today.
Hence, hereafter we ignore the a−3 term in (7).
Since the time component of the baryon current denotes

the baryon number density, i.e., j0B ¼ nB, one sees from the
energy-momentum tensor (2) that a nonzero _ϕ gives a
contribution to the energy density as ΔTϕ

00 ¼ −nB _ϕ=f and,
hence, shifts the energy level of baryons relative to that of
antibaryons. When the particles are in thermal equilibrium,
this can be interpreted as a particle of type i with baryon
number Bi obtaining an effective chemical potential of

μi ¼ Bi

_ϕ

f
¼ 8Bi

H3

fM
; ð8Þ

and likewise for its antiparticle but with an opposite sign.
Thus, if some baryon number violating process is in
equilibrium during a radiation-dominated epoch, a baryon
asymmetry is produced. Supposing the particles to be
relativistic fermions and ignoring their masses, the baryon
density is obtained from the Fermi-Dirac distribution as

nB ¼
X
i

Bigiμi
6

T2

�
1þO

�
μi
T

�
2
�
; ð9Þ

where the sum runs over all particle-antiparticle pairs i
coupled to ϕ and gi counts the internal degrees of freedom
of the (anti)particle i [13]. Using the expressions for the
Hubble rate 3M2

pH2 ¼ ðπ2=30Þg�T4 and entropy density
s ¼ ð2π2=45Þgs�T3 during radiation domination, the
baryon-to-entropy ratio is obtained as

nB
s

¼ π
P

iB
2
i gi

9
ffiffiffiffiffi
10

p g3=2�
gs�

T5

fMM3
p
: ð10Þ

This ratio freezes out when the baryon violating
interactions fall out of equilibrium. Using a subscript
“dec” to denote an evaluation at the decoupling of the
baryon violating interactions (and, in particular, Tdec for the
decoupling temperature), the ratio ðnB=sÞdec should
coincide with the current value of 8.6 × 10−11.
We have considered only the homogeneous mode of ϕ in

the above discussions; however, the ϕ field can also possess
spatial fluctuations seeded during inflation. Here, note that
the baryon asymmetry (10) is independent of the field value
of ϕ as a consequence of the shift symmetry; therefore, the
ϕ fluctuations do not directly propagate into baryon
isocurvature perturbations (see also [14], where a related
idea was investigated). Still the baryon isocurvature is not
strictly zero, since the ϕ fluctuations are not completely
frozen outside the horizon, and thus yields fluctuations in
_ϕ. However, this effect is suppressed by powers of ðk=aHÞ

for a comoving wave number k, which can easily be
checked by solving the full equation of motion (5) starting
from a Bunch-Davies initial condition. Hence, the resulting
baryon isocurvature is extremely small on CMB scales
which are far outside the horizon at decoupling, being
compatible with the nonobservation of isocurvature.
Backreaction and consistency.—We now analyze the

conditions under which the above calculations can be trusted.
In ϕ’s equation of motion (6), the term j0B=f which we

have neglected represents the backreaction of the produced
baryons on ϕ. Comparing the last two terms in (6) and
substituting for j0B from the above calculations, one finds that
the baryon backreaction can be neglected upon decoupling if

				
�
8
H3

M

�−1 j0B
f

				
dec

¼
P

iB
2
i gi

6

T2
dec

f2
≪ 1: ð11Þ

This is basically a requirement that the decoupling temper-
ature should be lower than the cutoff f. A violation of this
condition would signal the breakdown of the effective field
theory.
The effect of the ϕ condensate on the cosmological

expansion can be neglected if its contribution to the
Friedmann equation (4) is much smaller than the total
density of the Universe. This imposes, at the time of
decoupling,

				 1

3M2
pH2

�
_ϕ2

2
−
24 _ϕH3

M

�				
dec

¼ 160

3

H4
dec

M2M2
p
≪ 1: ð12Þ

Here we substituted the solution for _ϕ and also omitted
ð _ϕ=fÞj0B, as it is guaranteed to be smaller than the other
terms under (11).
One can also carry out a power-counting estimate of the

cutoff scale from ϕG=M along the lines discussed in
Ref. [15]. Requiring the cutoff to be higher than the relevant
energy scales gives a condition somewhat similar to (12),
although a naive power counting may be misleading for a
Gauss-Bonnet term. In the following discussions, we adopt
(12) as the bound onM. Let us also remark that, even when
H > M, the condition (12) is not necessarily violated;
however, if higher-dimensional gravitational couplings
are universally suppressed byM [e.g., ðR=M2Þð∂ϕÞ2], then
their contributions may become important.
The decoupling scale is also bounded from above by the

inflation scale Hinf , which is constrained by observational
limits on primordial gravitational waves; the Planck con-
straint [16] yields

Hdec < Hinf ≲ 9 × 1013 GeV: ð13Þ
The viable parameter space in the f − Tdec plane is

shown in Fig. 1. Here we have chosen
P

iB
2
i gi ¼ 1 and

g�ðTdecÞ ¼ gs�ðTdecÞ ¼ 106.75, and the colored regions
denote where the conditions are violated; the red region
is excluded due to a significant baryon backreaction
[cf. (11)], and the green region is excluded by the
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Planck bound on the inflation scale [cf. (13)]. The black
lines indicate where the correct amount of baryon asym-
metry ðnB=sÞdec ≈ 8.6 × 10−11 is achieved [cf. (10)], for
M ¼ 1018 (solid line), 1014 (dashed line), and 1010 GeV
(dotted line). For these choices of M, the condition (12)
from the gravitational backreaction is comparable to or
weaker than the inflation bound (13) and thus not shown
in the figure. For smaller M, the line of ðnB=sÞdec ≈ 8.6 ×
10−11 moves towards smaller Tdec; the condition (12) does
not cut off the line within the ranges of f and Tdec shown in
the figure; however, for M ≲ 109 GeV, the allowed values
for Hdec exceed M, and thus higher-dimensional gravita-
tional operators may become relevant.
Further constraints can be imposed on the parameter

space depending on the nature of the NG boson. Let us see
this directly in the following examples.
QCD axion and axionlike fields.—Here we discuss the

possibility that ϕ is the QCD axion [17] which provides a
solution to the strong CP problem. Then, in addition to the
linear potential sourced by the Gauss-Bonnet coupling, the
axion obtains a periodic potential from nonperturbative QCD
effects as

VQCDðϕ; TÞ ¼ mðTÞ2f2a
�
1 − cos

�
ϕ

fa

��
: ð14Þ

Here fa is the axion decay constant, and the temperature-
dependent mass is

mðTÞ ≈
8<
:

0.1 ×ma

�
ΛQCD

T

�
4

for T ≫ ΛQCD;

ma for T ≪ ΛQCD;
ð15Þ

with ma ≈ 6 × 10−6 eVð1012 GeV=faÞ, and ΛQCD≈
200 MeV. Focusing on the field range jϕj≲ fa, then a
comparison of VQCD ≃ 1

2
mðTÞ2ϕ2 with the Gauss-Bonnet

couplingϕG=M in a radiation-dominated universe shows that
the latter dominates over the former at temperatures

T ≳ 103 GeV
�jθðTÞjM

fa

�
1=16

; ð16Þ

where we used θ≡ ϕ=fa. As the right-hand side depends
weakly on θM=fa, we see that as long asTdec ≳ 103 GeV the
QCD effect is negligible during baryogenesis. On the other
hand, the Gauss-Bonnet coupling has become negligible by
the time the axion starts oscillating along its QCD potential,
which typically occurs atTosc ∼ 1 GeV. Inparticular, the shift
of the axion potential minimum today due to the Gauss-
Bonnet coupling is as small as

Δθ0 ¼
G0

fam2
aM

∼ 10−162
fa
M

; ð17Þ

which (unless for an extremely tinyM) is much smaller than
the observational bound jθ0j≲ 10−10 from limits on the
neutron electric dipole moment [18]. Thus, the baryon-
generating axion solves the strong CP problem.
However, the QCD axion ϕ may overclose the universe,

as its abundance relative to cold dark matter (CDM) is
given as [19]

Ωϕ

ΩCDM
∼ θ2osc

�
fa

1012 GeV

�
7=6

; ð18Þ

where θosc is the field value at the onset of the axion
oscillations. If fa ¼ f, and taking, for instance, the allowed
values on the black lines in Fig. 1, then the axion is long lived
and Ωϕ can exceed unity. One way to avoid this is by fine-
tuning the misalignment θosc to a tiny value (perhaps from
anthropic reasoning). However, the necessary fine-tuning is
actually more severe when taking into account the axion
isocurvature perturbations [20]; in order for the total CDM
isocurvature to be below the CMB limit [16], the axion can
constitute only a small fraction of the entire CDM.Moreover,
since the axion field evolves in the early times due to the
Gauss-Bonnet coupling, this field excursion should also be
taken into account upon tuning the initial field value.
Alternatively, M could take a low value, provided that

higher-dimensional gravitational couplings are somehow
suppressed. Then, for instance, M ≲ 105 GeV allows
baryogenesis without a significant backreaction with
fa ∼ f ∼ 1012 GeV, and without fine-tuning the alignment,
i.e., θosc ∼ 1, the QCD axion can generate the baryon
asymmetry as well as constitute the entire CDM. For these
parameters, the CDM isocurvature can also be consistent
with observational limits.
We also comment on the possibility of ϕ being one of the

axionlike fields arising from string theory compactifica-
tions [21]. In the simplest case, such a field is described by

FIG. 1. Parameter space in the f − Tdec plane. The colored
regions are excluded due to a significant backreaction from the
baryons (red area) and by the Planck upper bound on the inflation
scale (green area). The allowed parameter space is shown in
white. The black lines indicate where the right amount of baryon
asymmetry is produced, for the choice of M ¼ 1018 (solid line),
1014 (dashed line), and 1010 GeV (dotted line).
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a periodic potential (14) with a constant mass m; then its
abundance is computed as

Ωϕ

ΩCDM
∼ θ2osc

�
fa

1017 GeV

�
2
�

m
10−22 eV

�
1=2

: ð19Þ

For example, with θosc ∼ 1, fa ∼ f ∼ 1017 GeV, and
m ∼ 10−22 eV, the axionlike ϕ can serve as CDM and
generate the baryons; cf. Fig. 1. One can also check that, if
further M ≲ 1014 GeV, the corresponding decoupling tem-
perature allows inflation scales that give CDM isocurvature
below the current limit. Such an ultralight axion CDM is
also interesting from the point of view that it can produce
distinct signatures on small-scale structures [22].
Discussion.—Without some extra symmetries, there is

no a priori reason to forbid a NG boson from acquiring
shift-symmetric couplings to other fields. While most
coupled fields do not induce coherent effects, the back-
ground gravitational field of an expanding universe gives
rise to a coherent motion of the NG boson. We have shown
that this leads to the creation of a net baryon asymmetry of
the universe. Good candidates for the baryon-generating
NG boson are the axion(like) fields. This raises the
intriguing possibility that an axion could induce baryo-
genesis in the early Universe and then serve as cold dark
matter in the later Universe (and further solve the strongCP
problem if it is the QCD axion).
Let us comment on the observable consequences of our

scenario. Theories of a scalar coupled to the Gauss-Bonnet
term are known to evade no-hair theorems for black holes
[23], which may be tested by gravitational wave observa-
tions. We also note that, if M is not far from Mp, the
corresponding high decoupling temperature implies a high
inflation scale, yielding primordial gravitational waves that
could be observed by upcoming experiments. Furthermore,
couplings between the time-dependent NG boson and
parity violating terms such as F ~F may leave signatures
in cosmological observations [24,25]. It would also be
interesting to study the experimental implications of the
required baryon violating interactions.
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