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Standard thermometry employs the thermalization of a probe with the system of interest. This approach
can be extended by incorporating the possibility of using the nonequilibrium states of the probe and the
presence of coherence. Here, we illustrate how these concepts apply to the single-qubit thermometer
introduced by Jevtic et al. [Phys. Rev. A 91, 012331 (2015)] by performing a simulation of the qubit-
environment interaction in a linear-optical device. We discuss the role of the coherence and how this affects
the usefulness of nonequilibrium conditions. The origin of the observed behavior is traced back to how the
coherence affects the propensity to thermalization. We discuss this aspect by considering the availability

function.
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Introduction.—Thermodynamics provides a description
of open systems in terms of the exchange of energy, be it in
the form of either heat or work. Although it was developed
first in order to give an account of such systems once they
have reached equilibrium with the surrounding environ-
ment, it has recently been the object of extensions for
treating transient behaviors, irreversibility, and nonequili-
brium quantum processes. The knowledge gained through
such exertion ranges from fundamental [1-4] to more
technological issues related to nonequilibrium quantum
heat machines [5-7].

Within such a context, the simplest example considers a
single-particle system in contact with a thermal bath; the
thermodynamic limit can still be taken, by considering a
large collection of identical replicas [8]. By isolating a
single element, the need of accounting for the interactions
among constituents is avoided and the problem greatly
simplified. The attention is then entirely devoted to the
internal energy levels of this one constituent and, if this is a
quantum particle, to the coherence among them. Since the
presence of quantum coherence underlies the existence of
distinctively quantum states, viz. the class of entangled
states, it is natural to consider coherence itself as a resource,
with appropriate tools for assessing and quantifying its
presence [9-12].

These considerations find an immediate application in
the context of thermometry, since, on the one hand, we
assist at the interaction for a given time of a probe with the
monitored system, while, on the other, the probe itself
needs to be prepared in an informative, hence resourceful,
state [13—17]. In Ref. [18], Jevtic et al. have discussed the
implementation of an elementary thermometer with a single
qubit: The task is not the estimation of arbitrary temper-
atures but the discrimination between two thermal baths at
different temperatures. Notably, they have found that
limiting the interaction time between the qubit and either
bath, thus avoiding thermalization, results in an improved
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discrimination. This investigation opens perspectives for
realizing temperature measurements at the nanoscale, when
the thermometer needs to be even smaller than a nanosize
thermal bath, e.g., a nanomechanical device [19] or atomic
condensates [20-22].

Here, we present an experimental investigation of the
results of Jevtic et al. with a linear-optical simulator. We
show how one can determine an observable able to
discriminate optimally between the two baths and how
the coherence between the two energy levels of the qubit
influence the performance of the thermometer. Coherence
does play a role in the discrimination, but its role is not as
simple as a mere enhancement; instead, it affects the time
scale at which thermalization occurs. These features are
well captured by the change of the availability function.
Our investigations offer an experimental insight on the
roles of quantum nonequilibrium states as probes for
thermodynamic processes.

Qubit-bath interaction.—Our thermometer is constituted
by a single qubit, governed by its Hamiltonian
Hs = (hw/2)o,, where o, is the z-Pauli operator. When
isolated, the two levels of the system, the excited state |0)
and the ground state |1), are separated by hw, which
dictates the energy scale of the protocol.

The interaction of the qubit with a thermal bath, modeled
as a gas of noninteracting bosons, results in either of two
processes: (i) The qubit decays to the ground state trans-
ferring its energy to the thermal bath; (ii) the qubit absorbs
an excitation from the reservoir, hence hopping incoher-
ently to the excited state. The rate of the two processes is
dictated by the temperature.

Since we are approaching thermodynamics as a theory
describing state transformations in the presence of a
thermal bath, we introduce a phenomenological model
for this interaction as a quantum channel [23-26]. The
corresponding map required to simulate our interaction is a
generalized amplitude damping channel (GAD), that
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FIG. 1. Conceptual scheme of the protocol. First, the qubit is
initialized in a suitable probe state, and then it is put in contact
with a thermal bath of unknown temperature, either 7y or T5.
Finally, the qubit is removed from the interaction after a time 7
and measured to infer the working temperature.

utilizes two couples of Kraus operators. The first one
(Ey, Ep) describes the decay process (i) via a standard
amplitude damping (AD) channel [23]. The second one
(E,, E5) reproduces the inverse process (ii); this is an AD,
too, in which the roles of |0) and |1) are exchanged [27].
The GAD channel is characterized by two parameters: y,
which represents the decay rate for both the processes, and p,
which is the occurrence probability of the first couple of
Kraus operators; (1 — p) is the probability for the other
couple. These two parameters are linked to the exact solution
of the problem, given by the full Lindblad treatment:
(1-2N)"'=(1-=2p) and (1-y)=exp[-(1+2N)7],
where N is the average number of excitations in the bath
and 7 is the (dimensionless) interaction time as described in
Ref. [18]. We notice that the Lindblad treatment is justified
only in the Markovian limit of the dynamics [28].
Single-qubit thermometry.—Figure 1 illustrates our
discrimination protocol. At 7 =07, the thermometer is
kept isolated and initialized in the state [y) = cos(6/2)]0)+
sin(6/2)|1). At = = 0, the qubit is put in contact with the
thermal bath, which is itself at either a “cold” temperature
T, or a “hot” temperature 7, > T;. The different temper-
atures imply different occupation numbers N; and N»;
therefore, the qubit undergoes two distinct evolutions
depending on the state of the reservoir. Finally, after an
interaction time z, the qubit is isolated again and then
measured to determine whether the bath was cold or hot.
Full thermalization, 7 — oo, corresponds to the equilib-
rium regime where the qubit is in a thermal state; conven-
tional thermometry operates within this regime. In our
investigation, we extend this analysis to nonequilibrium
states. The state of the qubit after the interaction with the
reservoir T is p;(z) (i = 1, 2). The protocol then aims at
finding a suitable observable G(z) allowing us to discrimi-
nate p;(z) and p,(r) optimally [29,30]. The observable
G(r) is then chosen to maximize
[ Trlp1 (7)6(7)] = Trlp2(7)G(7)]
Ref. [27].
Linear-optics simulation.—We illustrate these concepts
by implementing a linear-optics simulator. The main

the difference

; more details are given in

FIG. 2. Experimental linear-optical simulation. Light is pro-
vided by a diode laser emitting 680 uW at 810 nm. Its
polarization is controlled by means of the HO wave plate. The
SLM, embedded in a displaced Sagnac interferometer, realizes
the coupling between the polarization and path, as detailed in the
text. At the two outputs, two polarization analyzers, consisting of
a quarter-wave plate, a half-wave plate, and a polarizing beam
splitter, are used to characterize the state after the simulated
interaction. The two analysis channels 1 and 2 are kept distinct
for practicality, but the results are combined for the analysis.
Intensities are detected by a linear diode. Inset: Detail of the loops
in the Sagnac interferometer. The presence of H3 and H4, both set
at an angle of 22.5°, makes the polarization sensitive to the
birefringent phase ¢ imparted by the SLM. A phase mask is
applied, presenting two phase settings: In order to implement
(Ey, E)), one half on the clockwise loop is kept fixed at ¢p = 0,
while the other half is varied to simulated different interaction
times. The mask is then inverted to implement (E,, E3).

advantage of using simulated dynamics is that it allows
us to isolate effects stemming genuinely from the process of
interest, decoupling all spurious behaviors from other
unwanted interactions. The linear-optical approach has
demonstrated its ability in replicating single-quantum
processes even when conducted in a fully classical regime
[31-36]. Indeed, this takes advantage of the fact that
photons are noninteracting particles; using classical light
provides a convenient way to obtain a large number of
independent replicas. In this work, we adopt this approach
for the simulation of an open system, where the qubit is
coded in the polarization and the coupling to the reservoir
occurs via the spatial mode [37,38].

Our experimental setup, shown in Fig. 2, consists of a
displaced Sagnac interferometer where one of the mirrors is
replaced by a spatial light modulator (SLM). By conven-
tion, we set the ground (excited) state |1) (]0)) to be the
vertical |V) (horizontal |H)) polarization state. The input is
initialized in a linear polarization, and then it is sent to the
interferometer. The beam is then divided in two using a
polarizing beam splitter (PBSO) whose outputs constitute
the two arms of the Sagnac interferometer. The polarization
is then coupled to the path using two half-wave plates (H3
and H4) and the SLM that imparts a birefringent phase ¢
(Fig. 2, inset) [39]. The mask displayed on the SLM makes
sure that such a phase is present only on one of the arms,
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FIG. 3. Simulated temperature discrimination. The expectation values of G(T) have been inferred from the experimentally
reconstructed density matrices, corresponding to three different input states. In the three panels, red dots are for the hot bath N, =
9.5 and blue dots for the cold bath N; = 5.5; the solid lines show the predicted behavior. The vertical dashed lines indicate the optimal
discrimination time, i.e., the time for which the difference of the expectation values is maximal. Vertical error bars are obtained through a
Monte Carlo routine that takes into account the uncertainties on the measured intensities, while horizontal error bars reflect the
uncertainties in the calibration of the SLM birefringent phase ¢, which simulates the interaction time 7 [27].

while the other arm is unaffected. Overall, this system
implements the transformation |H) — |H) on the clock-
wise loop and |V) — [cos(¢/2)|V) + sin(¢/2)|H)] on the
counterclockwise loop. When the two loops are super-
imposed on PBSO, the horizontal component of the
counterclockwise loop emerges on a separate output; this
simulates the incoherent excitation of the qubit correspond-
ing to the E; Kraus operator. The other output is then
associated with the complementary event E,. The damping
rate is then related to the phase setting as y = sin?(¢/2)
[27]. Our device can be programed to implement the
operators E, and E; by using a different phase mask on
the SLM that now leaves the |V) component unaltered.

We reconstruct the density matrix for the qubit after its
interaction with the reservoir in the following way. First, we
set the interferometer in order to implement the (E,, E)
transformation and perform state tomography of the polari-
zation degree of freedom [40], without distinguishing the
outputs of the interferometer. We repeat the same operation,
using the second setting (E,, E3). The two experimentally
reconstructed matrices are then summed with the opportune
weighting p, (1 — p) to obtain the state after the complete
interaction [41]. We then have access to the state of the
qubit at different evolution times and for both the hot and
cold baths, corresponding to different choices of the phase
¢, and of the weight p; this allows for testing the temper-
ature discrimination procedure of the two thermal baths
with different interaction times.

The results for the discrimination protocol are shown in
Fig. 3, where we plot the expectation values of G(z) for
the two baths associated with three different input states:
|H), |[+) = (|H) 4+ |V))/+/2, and | V). For every simulated
interaction time 7z, these values are evaluated from any
experimentally reconstructed density matrix p by obtaining
the probabilities p. = (g, |plg;) and p_ = (g_|p|g-),
where |g,) are the eigenvectors of G(z) with eigenvalues

+1; we then have that Tr[pG(7)] = p. — p_ [27].

In the three cases, the observed values follow closely the
predictions and demonstrate that G(z) serves well the
purpose of discriminating between the two possible temper-
atures. The maximal separation occurs at short times, well
before the qubit has reached full thermalization with the
reservoir. These three states are associated with three
different strategies: |V) corresponds to the ground state
of the qubit; hence, we simulate the standard procedure of
heating the thermometer; |H) corresponds to the excited
state, and, hence, we simulate the cooling of the thermom-
eter; finally, |+) is a coherent strategy, based on the
superposition of a hot and a cold thermometer. As expected,
in the steady-state regime, the use of any of the three states
is equivalent, as thermalization erases any information on
the initial state. Furthermore, the presence of the coherence
does not help either in implementing a more effective
thermometer, since the optimal separation between
Trlp, (z)G(z)] and Tr[p,(z)G(z)] weakly depends on the
input, or a faster thermometer, as the optimal measurement
time occurs at shorter times for the ground state |V). The
main advantage of using the state |4 is in the possibility of
maintaining a satisfactory discrimination ability for longer
times, as shown by the width of the separation between the
two curves; in practical applications, this eases the require-
ments on the controlled interaction between the qubit and
the reservoir.

Availability function.—The origin of the discrimination
capacity of the single-qubit thermometry has been traced
back to the different trajectories of the Bloch vector
associated with the qubit in the presence of either bath
[18]. Such an inspection allows us to appreciate the details
of the evolution that results in the observed discrimination.
A complementary approach consists in considering the
protocol from a purely thermodynamic perspective: Some
key aspects of the evolution may show up in thermody-
namic functions. The most common choice in the case of
systems which interact with a reservoir of a specified
temperature consists in introducing the availability
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FIG. 4. Variation of the availability during the evolution of the
system. The points are the free energies of the output states
extracted from the experimental density matrices, using different
input states: |H) (dark red and blue), |D) (red and purple), and
|V) (orange and cyan). The solid curves are the predicted
behaviors. The evolution in the presence of the hot (cold) bath
results in a larger (smaller) variation of the availability. Inset:
Predicted variation of the availability, normalized to its limit
value AF, at large times.

function that represents, in our case, an extension of the
standard Helmbholtz free energy in nonequilibrium proc-
esses with a thermal bath at a fixed temperature T’; it is well
established how it allows for capturing the dynamic
behavior and the spontaneity of a nonequilibrium transition
[42-48]. Within this framework, this thermodynamic
approach may represent a valid approach for the explora-
tion of more complex dynamics. Considering the evolution
between an initial (p;,) and final state (p,,,), the availability
is defined as AF = AU — TAS, where T is the temperature
of the thermal bath, AU = Tr[Hg(pin — pout)] is the differ-
ence of the internal energies, and AS is the difference in the
von Neumann entropies. The latter can be evaluated as
AS = —kgTr[poy 10g(pour)], With kg Boltzmann’s constant,
since S(p;,) = 0, p;, being a pure state. It can be shown that
the loss of availability is related to a monotonical increase
of the von Neumann entropy of the system, a signature of
the Markovian dynamic [49]; such a unidirectional infor-
mation flow between the system and the thermal bath
results in a decrease in the availability, as expected for
spontaneous transformations [44,46]. The observed varia-
tion as a function of the time is shown in Fig. 4, where AF
is measured in units of Aw. As expected, the variation is
more pronounced when the qubit interacts with the hot
bath, and there is a clear dependence of the final value on
the initial state, due to the different energy variation AU.

Qualitative assessments on the functioning of the ther-
mometer can be inferred by the dynamics of the variation of
AF and how this is affected by the coherence in the initial
qubit state; this not only fixes the limit value at the
thermalization, but also dictates the speed at which this
occurs. Since optimal discrimination exploits the transient

states of the qubit, this constitutes a critical parameter for its
performance. In the case of initialization in the coherent
superposition |+), we are able to slow down the thermal-
ization, and we do so in a different manner for the two
possible evolutions. Therefore, we obtain a longer transient
that assists the discrimination. The initialization in the two
energy states |H) and |V) results in a similar, shortened time
scale, as observed in the curves of Fig. 3. These behaviors are
made more evident when considering the variation of the
availability rescaled to the asymptotic value AF, for all
the distinct input states and reservoirs (Fig. 4, inset).

Conclusions and perspectives.—We have shown an
experimental investigation of the results of Jevtic et al
with a linear-optical simulator. Despite the simplicity of the
protocol, interesting insights are obtained on the usefulness
of nonequilibrium states and the interplay with the coher-
ence of the system. The capacity of the thermometer in
distinguishing between hot and cold thermal baths strongly
depends on the initial state of the qubit: While starting
from the ground state might allow for a faster operation,
coherence allows us to maintain a discrimination ability for
longer times. The variation of the availability of the system
permits us to describe such behavior invoking purely
thermodynamic considerations. Within this framework,
the availability of a simulation tool, which can also be
applied to quantum light, may stimulate explorations to
more complex dynamics. This platform could be a test bed
for introducing methods of quantum metrology in ther-
mometry [16,50] or ideas from thermometry in the mon-
itoring of quantum channels, establishing connections
between thermodynamic potentials and ultimate limits to
the precision.
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Note added.—Recently, we became aware that similar work
was being pursued by Tham et al. [51].
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