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Quantum mechanics postulates random outcomes. However, a model making the same output
predictions but in a deterministic manner would be, in principle, experimentally indistinguishable from
quantum theory. In this work we consider such models in the context of nonlocality on a device-
independent scenario. That is, we study pairs of nonlocal boxes that produce their outputs deterministically.
It is known that, for these boxes to be nonlocal, at least one of the boxes’ outputs has to depend on the other
party’s input via some kind of hidden signaling. We prove that, if the deterministic mechanism is also
algorithmic, there is a protocol that, with the sole knowledge of any upper bound on the time complexity of
such an algorithm, extracts that hidden signaling and uses it for the communication of information.
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Nonlocality is one of the defining properties of quantum
mechanics, stating that remote systems can have correla-
tions beyond what is expected from classical systems. If
one wants to account in a deterministic manner for the
nonlocal correlations that quantum mechanics predicts one
must allow for the existence of some kind of signaling
mechanism that links distant measurement choices and
outcomes. These mechanisms are said to violate parameter
independence [1]. But, since quantum correlations are
nonsignaling, such signaling mechanism must be restricted
to the so-called hidden variables, and not reach the
phenomenological level.
Some examples of deterministic nonlocal theories are the

hidden variable model with communication of Toner and
Bacon [2] and, more prominently, Bohmian mechanics [3].
For those models that use classical communication to
mimic nonlocality, one can in fact study the amount of
communication needed (see, for example, [4–6]).
In all these theories, although the outputs at each round

of a Bell test are determined given the inputs and the hidden
variables, the sequence of such variables is chosen ran-
domly. In this article we consider the class of deterministic
models for nonlocal correlations in which the hidden
variables are not chosen randomly but pseudorandomly,
that is, by means of an algorithmic process, and study
whether this has operational consequences. Note that the
sequence of hidden variables for a given experiment is
experimentally unaccessible. Here, we wonder whether
imposing these sequences to be computable has any
operational consequences when considering only the prop-
erties observed in the Bell experiment. This is equivalent to
considering boxes that on each round of a Bell test define

their outputs by evaluating a computable function of all the
inputs and the number of round.
Our main result is to prove that deterministic models

reproducing nonlocal correlations must be uncomputable to
exclude that those correlations can lead to observable
signaling. In other words, for any deterministic and
computable model that uses hidden signalling to reproduce
nonlocal correlations, we provide a protocol that, by having
access only to the observed variables in the Bell test and
with the knowledge of any upper bound on the model’s
time computational complexity, is able to extract the hidden
signaling and use it for communication.
There are a few previous results in this direction. First, it

is argued in [7] that the possibility to algorithmically
compress the outputs of measurements over certain bipar-
tite quantum states would allow for signaling. Here how-
ever we obtain our result in a device-independent scenario,
that is, without assuming quantum mechanics. Second, in
[8], computability of the outputs implying signaling is
proven for the PR box and for any nonlocal boxes violating
the chained Bell inequality or winning any pseudotelepathy
game (nonlocal games having a quantum strategy that wins
with probability 1). Our result is that this is true for any
nonlocal correlations. We provide an explicit communica-
tion protocol. Finally, the question of the computability of
the sequences of outputs, although without relating it to the
possibility of signaling, has also been studied for con-
textuality scenarios [9], through the localization of value
indefinite observables [10].
This paper is organized as follows: first we introduce the

scenario that we are considering. Then we briefly review
the tools from computability theory that we need to resort to
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in order to prove our main result. Finally, we present our
results.
The scenario.—We consider a standard Bell scenario.

For the sake of simplicity, we present our results for the
simplest Clauser-Horne-Shimony-Holt Bell test [11] where
we have two parties, Alice and Bob, each one with a box
that has a binary input and a binary output. The extension to
other scenarios is straightforward.
Our goal is to study deterministic and computable

models that reproduce nonlocal correlations. This means
that there are computable functions A;B∶f0; 1g × f0; 1g×
N → f0; 1g, representing Alice’s and Bob’s boxes, respec-
tively, such that Aðx; y; nÞ [respectively Bðx; y; nÞ] defines
the output at the nth round of Alice’s (respectively Bob’s)
box when Alice’s input is x and Bob’s input is y. See Fig. 1
for a schematic representation. As for the nonlocality of the
boxes, we formalize it through the following definition:
Definition 1. A pair of boxes A, B with binary inputs and
outputs is nonlocal if whenever the sequences of inputs
ðxiÞi∈N and ðyiÞi∈N are independent tosses of a fair coin, the
sequences of outputs ðaiÞi∈N and ðbiÞi∈N are such that

pða; bjx; yÞ ≔ lim
n→∞

4#fi < njðxi; yi; ai; biÞ ¼ ðx; y; a; bÞg
n

violates a Bell inequality with probability 1.Note that
definition 1 is general enough to cover the usual non-
deterministic scenario as well.
As we said in the introduction, because we are looking at

deterministic boxes generating nonlocal correlations, their
outputs have to depend on each other’s input. Since the
boxes are computable, this is the only information they
need to share, as any other necessary data can be computed
from the inputs. It is important to note that, although it
seems that our toy model is signaling, and therefore it
would not come as a surprise that Alice can signal to Bob,
this is not the case. The model uses signaling for its internal
workings but this does not necessarily imply that Alice and
Bob can send information to each other. For instance, if one
does not impose that the functions A and B are computable,
one can perfectly simulate quantum mechanics without
violating the no-signaling principle. Bohm’s theory [3]
constitutes an example of this simulation.

It is easy to see that, if the dependence between distant
inputs and outputs happens in only finitely many rounds,
the boxes are essentially local. Therefore, we have that
Lemma 1. If A and B are a pair of deterministic

nonlocal boxes, then for infinitely many values of n, there
is x such that Aðx; 0; nÞ ≠ Aðx; 1; nÞ or there is y such
that Bð0; y; nÞ ≠ Bð1; y; nÞ.
In the following, A and B are a pair of computable

deterministic nonlocal boxes and, without loss of general-
ity, we make the next assumption: for infinitely many n,

∃y ∈ f0; 1gsuch thatBð0; y; nÞ ≠ Bð1; y; nÞ; ð1Þ
or in other words, for infinitely many values of n, the value
of x can be determined from the output of B with the
suitable choice of y. Therefore, if Alice knew how to
compute B, they could trivially signal from Alice to Bob
(Alice just inputs her message, and in the rounds in which
Bob’s output depends on Alice’s input, he can reconstruct
her input). The situation we want to study is when B is
unknown.
What we show next is that, with the assumption thatB is a

computable function, one can actually devise a protocol to
transmit one-way information from Alice to Bob with the
sole knowledge of some upper bound on the time computa-
tional complexity ofB. Before showing the protocol,weneed
to introduce some concepts from computability theory.
Tools from computability theory.—The main ingredient

in the protocol we are about to describe is that of learning a
target computable function f∶N → f0; 1g from a given
class C by looking at finite prefixes of f [12], where a prefix
of f of length n is defined as the finite sequence
fð0Þ; fð1Þ; fð2Þ;…; fðn − 1Þ. To learn a computable func-
tion f means to discover a program computing f. The
learner chooses successive candidate programs that are
consistent with the finite prefix of f already seen. During
this process, the program may change until it stabilizes in a
certain program computing f.
The learning procedure for C depends on the class C but

not on the specific function f to be learned. Not all classes
of functions are learnable: it is well known that the class of
all computable functions is not learnable [13]. On the
contrary, for every computable function t, the class of
functions computable in time OðtÞ is learnable. The
learnability of the class C of functions running in time
OðtÞ follows from the fact that such a class is computably
enumerable; i.e., a computer can list programs computing
all functions in the class (possibly with repetitions). As
shown in Fig. 2, for a target function f ∈ C the learner
makes its guess by picking the first program in the
enumeration whose outputs coincide with the already seen
bits of f. Since one of the programs computing f is in the
enumeration [every program running in timeOðtÞ is listed],
and the learner only moves forward in that list (it picks the
first program whose output coincides with every seen bit),
at some point it finds one program computing f.

FIG. 1. Schematic representation of the scenario considered.
Two distant observers, Alice and Bob, run a Bell test by
implementing measurements on two systems. The observed
correlations are described by a hidden-signaling mechanism plus
computable functions determining the outputs given the inputs at
each round n.
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The signaling protocol.—We are now in position to present
our main result: the construction of a protocol that allows two
parties, Alice and Bob, to signal if the following three
conditions hold. (i) Their boxes are nonlocal, in the sense
of definition 1; that is, that the outputs of the boxes lead to an
estimated probability distribution that is nonlocal and no
signaling, such as those of quantum theory. (ii) The internal
mechanism of the boxes is computable and is assisted by a
hidden-signaling mechanism. (iii) Alice and Bob know a
computable time bound function t forBob’s box computation.
The key idea of the protocol is for Bob to perform a

learnability scheme on the outputs of his box. Once he has
learned function B, he uses the rounds n such that (1) holds
to reconstruct Alice’s input (see lemma 1) and, thus,
received the signal. There are three issues that we need
to deal with in this approach.
(i) In order for Bob to learn a program to compute the

function B, he needs to know Alice’s inputs x, at least until
B has been learned.
(ii) In general, Bob will not be able to tell when he has

effectively learned B, as for any given prefix, there are
infinitely many computable sequences reproducing it.
(iii) For every round n, Bob has access only to the value

of B for the pair of inputs ðxn; ynÞ selected in the round.
To cope with the first two issues, Alice and Bob alternate

between learning rounds and signaling rounds. The former
are rounds in which they know both parties inputs (they are
preestablished) and are used by Bob to learn function B.
The latter are rounds that are used to send a message from
Alice to Bob assuming B is already known. Choosing the
preestablished inputs in a sufficiently random manner
allows them to cope with the third issue. We now give a
description of the protocol and sketch the proof of its
soundness. For a more detailed technical explanation, see
Supplemental Material [14].

As a first step of the protocol, Alice and Bob have to
assume a time complexity class for the boxes’ functions.
This is done by choosing a computable function t that tells
them how long it takes for Bob’s box to compute its output
on round n. To perform the alternation aforementioned,
they share a sequence S whose symbols are either a pair of
bits, or an integer between 1 and m, where m is the length
of the message that Alice wants to communicate.
(i) Learning rounds. If the nth symbol of S is a pair

ðxn; ynÞ, Alice inputs xn and Bob inputs yn. Since Bob
knows both inputs and his output Bðxn; yn; nÞ, he uses
every such round to perform a learnability scheme in order
to make a better guess for his function B. Specifically, he
looks for the first program p running in time OðtÞ such that
for all ðxj; yjÞ in the first n symbols of S, we have
pðxj; yj; jÞ ¼ Bðxj; yj; jÞ. Notice that the construction of
the candidate program p is based only on the values
corresponding to the learning rounds.
(ii) Signaling rounds. If the nth symbol of S is a number

kn ∈ f1…mg, Alice inputs the knth bit of her message and
Bob checks with his candidate program p for B if Alice’s
input can be inferred from his output by choosing a
proper input, i.e., if there is a value of y such that
pð0; y; nÞ ≠ pð1; y; nÞ. If there is no such y, Bob inputs
0 to his box and proceeds to the next round. Or else,
suppose pð0; y; nÞ ¼ u and pð1; y; nÞ ¼ 1 − u. Bob inputs
y to his box. If the output is u then Bob postulates that
the knth symbol of the message from Alice is 0, else he
postulates that it is 1.
For this protocol to be sound, it suffices that the

following properties hold:
(P1) There exists a number of round n0 such that for all

n ≥ n0, Bob’s candidate program p at stage n is correct;
that is, pðx; y; nÞ ¼ Bðx; y; nÞ for all x; y ∈ f0; 1g. In other
words, the learning process converges to B.
(P2) For the kth bit of Alice’s message and for infinitely

many n, SðnÞ ¼ k ∈ N and Bð0; y; nÞ ≠ Bð1; y; nÞ for some
y ∈ f0; 1g; i.e., the signaling mechanism happens for
infinitely many rounds. For every k, after finitely many
rounds, Bob’s postulate for bit k of Alice’s message is
forever correct.
When (P1) and (P2) hold, the values obtained on the

signaling rounds can be incorrect only for finitely many
rounds (until B has been learned). Therefore, on the long
run Bob is able to identify each bit from Alice’s message as
the value that showed up the most for that bit.
Now, whether (P1) and (P2) hold depends on the choice

of the shared sequence S. For example, let us consider the
case in which SðnÞ are independent and identically dis-
tributed (i.i.d.) random variables. To see that (P1) holds we
proceed by contraposition. Suppose that the learning
procedure stabilizes in one of the finitely many programs
p appearing before one computing B in the enumeration,
and whose outputs differ from those of B in infinitely many
inputs ðx; y;mÞ. This would imply that for almost all

FIG. 2. Suppose we want to learn a f0; 1g-valued function f
and let fsigi∈N be a computable enumeration of programs
computing f0; 1g-valued functions, which run in time OðtÞ.
The ith row represents the sequence sið0Þ; sið1Þ; sið2Þ;…. After
seeing fð0Þ ¼ 1, fð1Þ ¼ 0, and fð2Þ ¼ 1, the guess for the target
function is defined as (the index of) the first program whose
outputs match those values (in the example, the guess is s6).
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rounds n in which S dictates learning, n is not one of the
infinitely many m for which pðx; y;mÞ ≠ Bðx; y;mÞ for
some ðx; yÞ. It is easy to see that the probability of this
happening when choosing the learning rounds n at random
is 0. To see that (P2) holds it suffices to observe that
amongst the infinitely many n where (1) is true, the
probability that S picks finitely many of them to signal
the kth bit of the message is 0.
However, letting S be i.i.d. random variables makes our

argument too weak, as it would mean that Alice and Bob
have access to randomness, a noncomputable resource,
namely a random variable, to test models of nature that
are assumed to use only computable functions. On the other
hand, choosing a too simple sequence for S does not work. It
is not hard to see that if S is chosen such that, for instance, it
indicates learning in the odd rounds and signaling in the
even, the learning could converge to a program that coincides
withB in almost all odd positions but, for the even positions,
it outputs, say, the negation of B [this program, of course,
also runs in timeOðtÞ]. One can then expect that somenotion
of computable yet sufficiently random is needed for the
protocol towork. The question is the following: Canwe find
a computable sequence S that does the job?
In general, no easily predictable sequence S is suitable.

However, one can consider the notion of t-randomness
[15–17], in which the degree of randomness is defined with
respect to an adversary whose computing time is bounded
by some computable function t. Then, the idea is to run the
previous protocol with a sequence that, while being
computable, “looks like a random variable” for the devices
with the assumed bounded computational power. Now,
the question is to operationally define what “looking like a
random variable” means. Intuitively, the notion of a
sequence random with respect to a time bound t can be
related to the impossibility of the adversary to predict its
symbols using a machine running in time OðtÞ.
More precisely, the adversary has a computer program

that computes a function M, such that, given the first k
symbols of the sequence S (i.e., S0S1…Sk−1), it tells what
part of its capital the adversary has to bet on each possible
next symbol Sk. In other words,M is a betting strategy. The
sequence S is called t-random if there is no such betting
strategy, computable in timeOðtÞ, that makes the adversary
win an unbounded amount of money.
In Supplemental Material [14] we show how the notion

of t-randomness captures this intuition and provides a
thorough proof that the protocol works even when S is a
computable t-random sequence. It is important to note that,
from a program for t, one can compute a t-random sequence
in time OðtðnÞ logðtðnÞÞn3Þ (see, e.g., [17]). Therefore, for
our protocol to work, Alice and Bob only need to know a
computable time bound t for B, since they are able to
compute a suitable S from a program for t.
It is important to note that, without any knowledge of B,

there is no a priori bound on the time it takes Bob to

determine Alice’s message with high enough confidence.
Nonetheless, since this time is finite, there exists some
finite distance for which the communication allowed by our
protocol is superluminal. For instance, if it takes Bob M
rounds to find out Alice’s message and each round takes a
time T, then if they are at a distance cTM, the message is
obtained before a light signal from Alice could reach Bob.
It could be argued that imposing a bound on the time

complexity of Alice and Bob’s boxes (which are nothing
but an abstraction of what nature is doing to choose the
outputs) is a strong requirement. However, since the
number of computational steps per second that can be
performed by a system of mass m is upper bounded by
2mc2=πℏ [18], this is not only a requirement of our
protocol but a reasonable physical assumption.
Discussion.—Our protocol shows that correlated systems

that would have violated a Bell inequality if they were used
for a standard Bell test (i.e., with random inputs) can be
used to signal if assumed to be computable and a time (or
space) bound for their computational complexity is known
in advance. The main consequence of this is that we are left
with the following consequences: either Bell-violating
systems cannot be computable, or if Alice and Bob guess
properly a complexity class larger than the one used by the
computable systems, they can signal in either way using the
previous protocol. Our result implies that, under the well-
established assumption that no observable signaling exists,
we need to accept the existence of truly unpredictable
physical processes.
It is worth mentioning that our result is not in conflict

with the different interpretations of quantum mechanics.
All of them predict random outputs, which are not allowed
by our model. In the Copenhagen interpretation, the
measurement process is postulated as random, whereas,
for example, Bohmian mechanics is deterministic but
postulates initial conditions that are randomly distributed
and fundamentally unknowable.
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