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A Hamiltonian operator Ĥ is constructed with the property that if the eigenfunctions obey a suitable
boundary condition, then the associated eigenvalues correspond to the nontrivial zeros of the Riemann zeta
function. The classical limit of Ĥ is 2xp, which is consistent with the Berry-Keating conjecture. While Ĥ
is not Hermitian in the conventional sense, iĤ isPT symmetric with a broken PT symmetry, thus allowing
for the possibility that all eigenvalues of Ĥ are real. A heuristic analysis is presented for the construction of
the metric operator to define an inner-product space, on which the Hamiltonian is Hermitian. If the analysis
presented here can be made rigorous to show that Ĥ is manifestly self-adjoint, then this implies that the
Riemann hypothesis holds true.
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The Riemann zeta function ζðzÞ is conventionally
represented as the sum or the integral

ζðzÞ ¼
X∞

k¼1

1

kz
¼ 1

ΓðzÞ
Z

∞

0

dt
tz−1

et − 1
:

(The integral reduces to the sum if the denominator of the
integrand is expanded in a geometric series.) Both repre-
sentations converge and define ζðzÞ as an analytic function
when ReðzÞ > 1. These representations diverge when
z ¼ 1 because the zeta function has a simple pole at
z ¼ 1. Substituting z ¼ −2n (n ¼ 1; 2; 3;…) in the reflec-
tion formula

ζðzÞ ¼ 2zπz−1 sinðπz=2ÞΓð1 − zÞζð1 − zÞ

shows that the zeta function vanishes when z is a negative-
even integer. These zeros of ζðzÞ are called the trivial zeros.
The Riemann hypothesis [1] states that the nontrivial

zeros of ζðzÞ lie on the line ReðzÞ ¼ 1
2
. This hypothesis has

attracted much attention for over a century because there is
a deep connection with number theory and other branches
of mathematics. However, the hypothesis has not been
proved or disproved. Any advance in understanding the

zeta function would be of great interest in mathematical
science, whether or not one succeeds in finally proving or
falsifying the hypothesis.
In this Letter, we examine the Riemann hypothesis by

constructing and studying an operator Ĥ that plays the role
of a Hamiltonian. The conjectured property of Ĥ is that its
eigenvalues are exactly the imaginary parts of the nontrivial
zeros of the zeta function. The idea that the imaginary parts
of the zeros of ζðzÞ might correspond to the eigenvalues of
a Hermitian, self-adjoint operator (assuming the validity of
the Riemann hypothesis) is known as the Hilbert-Pólya
conjecture. Research into this connection has intensified
following the observation that the spacings of the zeros
of the zeta function on the line ReðzÞ ¼ 1

2
and the spacings

of the eigenvalues of a Gaussian unitary ensemble of
Hermitian random matrices have the same distribution
[2–4]. Berry and Keating conjectured that the classical
counterpart of such a Hamiltonian would have the form
H ¼ xp [5,6]. However, a Hamiltonian possessing this
property has hitherto not been found (see [7] for a detailed
account of the Berry-Keating program and its extensions).
We propose and consider the Hamiltonian

Ĥ ¼ 1
1 − e−ip̂

ðx̂ p̂þp̂ x̂Þð1 − e−ip̂Þ: ð1Þ

Our main findings are as follows. (i) The non-Hermitian
Hamiltonian Ĥ in (1) formally satisfies the conditions of
the Hilbert-Pólya conjecture. That is, if the eigenfunctions
of Ĥ are required to satisfy the boundary condition
ψnð0Þ ¼ 0 for all n, then the eigenvalues fEng have the
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property that f1
2
ð1 − iEnÞg are the nontrivial zeros of the

Riemann zeta function. (ii) The Hamiltonian Ĥ reduces to
the classical Hamiltonian H ¼ 2xp when x̂ and p̂ com-
mute, in agreement with the Berry-Keating conjecture.
We derive the corresponding boundary condition that leads
to the quantization of the Berry-Keating Hamiltonian
ĥBK ¼ x̂ p̂þp̂ x̂. (iii) Although Ĥ is not Hermitian, iĤ
is PT symmetric; that is, iĤ is invariant under parity-time
reflection (in the sense to be defined), which means that
the eigenvalues of iĤ are either real or else occur in
complex-conjugate pairs. If iĤ has maximally broken PT
symmetry—that is, if all of its eigenvalues are pure-
imaginary complex-conjugate pairs—then the eigenvalues
of Ĥ are real and the Riemann hypothesis follows.
(iv) While Ĥ is not Hermitian (symmetric) with respect
to the conventional L2 inner product, we introduce an
alternative inner product such that hĤφ;ψi ¼ hφ; Ĥψi for
all φðxÞ and ψðxÞ belonging to the linear span of the
eigenstates of Ĥ. (v) If the Riemann hypothesis is correct,
then the eigenvalues of Ĥ are nondegenerate, and conversely
if there are nontrivial roots of ζðzÞ for which ReðzÞ ≠ 1

2
,

then the corresponding eigenvalues and eigenstates are both
degenerate.
Preliminaries.—The Hamiltonian Ĥ in (1) is a similarity

transformation of the formally Hermitian local Hamiltonian
x̂ p̂þp̂ x̂ via the nonlocal operator Δ̂ ≔ 1 − e−ip̂. We must
therefore identify properties of the operators Δ̂ and Δ̂−1.
We work in units for which ℏ ¼ 1, so the momentum
operator is p̂ ¼ −i∂x. Thus, e−ip̂ is a shift operator if it acts
on functions fðxÞ that have a Taylor series about x with a
radius of convergence greater than one. In this case, Δ̂ is a
difference operator:

Δ̂fðxÞ ¼ fðxÞ − fðx − 1Þ: ð2Þ

Because Δ̂ annihilates unit-periodic functions, it does not
have an inverse in the space of all smooth functions.
However, we shall be interested in functions that vanish as
x → ∞. With this in mind, by taking a series expansion of
ð1 − e−ip̂Þ−1 we may define Δ̂−1 as (cf. [8])

Δ̂−1fðxÞ ¼ 1
ip̂

X∞

n¼0

Bn
ð−ip̂Þn
n!

fðxÞ; ð3Þ

where fBkg are the Bernoulli numbers [9], with the
convention that B1 ¼ − 1

2
. For some functions fðxÞ this

formal series diverges but it is Borel summable. The
operator ðip̂Þ−1 is interpreted as an integral operator with
a boundary at infinity:

1
ip̂

gðxÞ ¼
Z

x

∞
dt gðtÞ:

Then Δ̂−1 defined in (3) has the property that if fðxÞ
vanishes at infinity, then we have Δ̂−1Δ̂fðxÞ ¼ fðxÞ.
Eigenfunctions and eigenvalues.—The solutions to the

eigenvalue differential equation Ĥψ ¼ Eψ are given in
terms of the Hurwitz zeta function ψ zðxÞ ¼ −ζðz; xþ 1Þ on
the positive half line Rþ (the negative sign is our con-
vention), with eigenvalues ið2z − 1Þ. To see this, we
multiply the eigenvalue equation Ĥψ ¼ Eψ on the left
by Δ̂. This gives a first-order linear differential equation
ðx̂ p̂þp̂ x̂ÞΔ̂ψ ¼ EΔ̂ψ for the function Δ̂ψ , whose solution
is unique and is given by Δ̂ψ ¼ x−z for some z ∈ C, up to a
multiplicative constant. To proceed, let us calculate

Δ̂−1x−z ¼ 1
ip̂

X∞

n¼0

Bn
ð−ip̂Þn
n!

ðip̂Þ x
1−z

1 − z

¼ 1

1 − z

X∞

n¼0

Bn
ð−ip̂Þn
n!

x1−z:

Since ip̂ ¼ ∂x and ∂n
xxμ ¼ ½Γðμþ 1Þ=Γðμ − nþ 1Þ�xμ−n,

we set μ ¼ 1 − z to obtain the asymptotic series

Δ̂−1x−z ∼
Γð2 − zÞ
1 − z

X∞

n¼0

Bn
ð−1Þn
n!

x1−z−n

Γð2 − z − nÞ ; ð4Þ

which is valid in the limit as x → ∞. To obtain the Borel
sum [10] of the series, we use the integral representation

1

Γð2 − z − nÞ ¼
1

2πi

Z

C
du euunþz−2;

where C denotes a Hankel contour that encircles the
negative-u axis in the positive orientation [9]. Hence,

Δ̂−1x−z ¼ Γð1 − zÞ
2πi

x1−z
Z

C
du euuz−2

X∞

n¼0

Bn
ð−u=xÞn

n!

¼ Γð1 − zÞ
2πi

x−z
Z

C
du

euuz−1

1 − e−u=x
:

Finally, we let u=x ¼ t and get

Δ̂−1x−z ¼ Γð1 − zÞ
2πi

Z

C
dt

exttz−1

1 − e−t
;

which we recognize as the negative of the integral repre-
sentation for the Hurwitz zeta function [9]. (An analogous
result was obtained in a different context in [11].) It follows
that ψ zðxÞ ¼ −ζðz; xþ 1Þ up to an additive unit-periodic
function, but Ĥψ ¼ Eψ implies that the periodic function
must be identically zero. We thus deduce that ψ zðxÞ ¼
−ζðz; xþ 1Þ is the solution to the eigenvalue differential
equation with eigenvalue ið2z − 1Þ:

PRL 118, 130201 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

31 MARCH 2017

130201-2



Ĥψ zðxÞ ¼ Δ̂−1ðx̂ p̂þp̂ x̂Þx−z ¼ ið2z − 1Þψ zðxÞ:

Next, we impose the boundary condition that ψ zð0Þ ¼ 0
on the class of functions ψ zðxÞ that satisfy the eigenvalue
differential equation. This yields a countable set of eigen-
functions of Ĥ. (Since Ĥ is similar to a first-order differ-
ential operator, we impose just one boundary condition.)
The choice of the boundary condition ψ zð0Þ ¼ 0, as
discussed below, is motivated by our requirement that p̂
should be symmetric. Because −ψ zð0Þ ¼ ζðzÞ is the
Riemann zeta function, the boundary condition that we
have used implies that z must belong to the discrete set of
zeros of ζðzÞ.
The zeros of the Riemann zeta function may be either

trivial or nontrivial. It follows from (4) that for the trivial
zeros z ¼ −2n (n ¼ 1; 2; 3;…) we have ψ zðxÞ ¼
−B2nþ1ðxþ 1Þ=ð2nþ 1Þ, where BnðxÞ is a Bernoulli
polynomial [9]. In this case jψ zðxÞj grows like x2nþ1 as
x → ∞. For the nontrivial zeros ψ zðxÞ oscillates and
jψ zðxÞj grows sublinearly. In particular, it follows from
(4) that for large x we have ψ zðxÞ ≈ x1−z=ð1 − zÞ. Thus, for
the trivial zeros Δ̂ψ zðxÞ blows up, but for the nontrivial
zeros Δ̂ψ zðxÞ goes to zero as x → ∞. The eigenstates
associated with the trivial zeros violate the orthogonality
relation discussed below, and the eigenstates associated
with the nontrivial zeros do not. These indicate that the
eigenstates associated with the trivial zeros do not belong to
the domain of Ĥ. Therefore, under the boundary condition
ψð0Þ ¼ 0, the nth eigenstate of the Hamiltonian (1) is
ψnðxÞ ¼ −ζðzn; xþ 1Þ; the eigenvalues En ¼ ið2zn − 1Þ
are discrete and zn ¼ 1

2
ð1 − iEnÞ are the nontrivial zeros

of the Riemann zeta function. The Riemann hypothesis is
valid if and only if these eigenvalues are real.
The analysis above establishes a complex extended

version of the Berry-Keating conjecture [12]. We are not
able to prove that the eigenvalues of Ĥ are real; nevertheless,
in what follows we present a heuristic analysis that suggests
that the eigenvalues are real. Specifically, we first investigate
symmetry properties of Ĥ, which shows that iĤ is PT
symmetric and Ĥ is pseudo-Hermitian. This allows us to
obtain a quantization of the Berry-Keating Hamiltonian
ĥBK ¼ x̂ p̂þp̂ x̂ that is isospectral to Ĥ. We then make
use of the biorthogonality properties of the eigenstates of Ĥ
to introduce an inner product which makes Ĥ Hermitian.
Relation to pseudo-Hermiticity.—To gain some intuition

about the reality of the eigenvalues of the Hamiltonian, we
remark first that iĤ is PT symmetric [13,14] in the
following sense. Under conventional parity-time reflection,
if p̂ is a momentum and x̂ is a coordinate, we have
PT ∶ðx̂; p̂Þ → ð−x̂; p̂Þ. However, we consider instead the
variables where the roles of position x̂ and momentum p̂
are interchanged [15]. We then define parity-time reflection
asPT ∶ðx̂; p̂Þ → ðx̂;−p̂Þ. Therefore, since PT ∶i → −i, we
deduce that iĤ is invariant under this modified PT

reflection. It follows that the eigenvalues of iĤ are either
real (if the PT symmetry is unbroken in the sense that the
associated eigenstates are also eigenstates of PT ), or else
they form complex-conjugate pairs (if the PT symmetry is
broken in the sense that the associated eigenstates are not
eigenstates of PT ). If the PT symmetry is maximally
broken for iĤ, then the eigenvalues of Ĥ would be real,
and the Riemann hypothesis would hold. In our case, since
PT ψnðxÞ ¼ ψ−nðxÞ, the PT symmetry is indeed broken
for all complex values of zn. (For the trivial zeros the PT
symmetry is unbroken.)
Let us now assume that the momentum operator p̂ is

Hermitian (symmetric); that is, the action of p̂† agrees with
that of p̂ on the domain of Ĥ. Here † denotes the adjoint
with respect to the standard inner product on L2ðRþÞ. Then
the Hermitian adjoint of Ĥ is

Ĥ† ¼ ð1 − eip̂Þðx̂ p̂þp̂ x̂Þ 1
1 − eip̂

: ð5Þ

Therefore, if we define the operator η̂ according to

η̂ ¼ sin2
1

2
p̂;

which is non-negative, bounded, and Hermitian under the
assumption,weget Ĥ†¼ η̂Ĥ η̂−1; i.e., Ĥ ispseudo-Hermitian
in the sense of [16]. Assuming that p̂ is Hermitian, there
exists an associated Hermitian Hamiltonian ĥ obtained by
conjugating Ĥ with an operator ρ̂ satisfying ρ̂†ρ̂ ¼ η̂, that is,
ρ̂Ĥ ρ̂−1¼ ĥ. Letting ρ̂¼ sin1

2
p̂, we obtain ĥ¼ x̂p̂þp̂x̂þℏp̂.

We include Planck’s constant ℏ explicitly here because it
indicates that the linear momentum term is a quantum
anomaly; this term vanishes in the classical limit ℏ → 0

[15]. Alternatively, by letting ρ̂ ¼ Δ̂ we obtain the Berry-
Keating Hamiltonian ĥBK ¼ x̂ p̂þp̂ x̂, whose eigenstates
are ϕBK

z ðxÞ ¼ x−z.
The associated Hamiltonian ĥ is unique up to unitary

transformations, so there are infinitely many formally
Hermitian Hamiltonians that are similar to Ĥ [12]. If both
η̂ and η̂−1 are positive, bounded, and Hermitian, then the
Hamiltonians Ĥ and ĥ are isospectral [17]. Assuming that p̂
is Hermitian, these operators are indeed Hermitian and non-
negative, but η̂−1 is not bounded. Nevertheless, we can show
by a direct calculation that Ĥ and ĥ are in fact isospectral.
Furthermore, since the map from the eigenstates fψnðxÞg of
Ĥ to the eigenstates fϕnðxÞg of ĥ is governed by ρ̂, we can
identify the quantization condition for the eigenstates of
the associated Hamiltonians explicitly by using the relation
2i sin 1

2
p̂ψ zðxÞ ¼ ψ zðxþ 1

2
Þ − ψ zðx − 1

2
Þ. For the Berry-

Keating Hamiltonian, the condition ψ zð0Þ ¼ 0 leads to

lim
x→0

½ϕBK
z ðxÞ − ζðz; x − 1Þ� ¼ 0;

or, equivalently, limx→1ϕ
BK
z ðxÞ ¼ −limx→1ζðz; xþ 1Þ.
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Biorthogonal states.—Let us proceed under the
assumption that p̂ is Hermitian. Because Ĥ is not
Hermitian, its eigenstates fψnðxÞg are not orthogonal.
Nevertheless, by considering the eigenstates f ~ψnðxÞg of
Ĥ† we obtain a biorthogonal set of eigenstates [17],
provided that Ĥ† is the Hermitian adjoint of Ĥ. Bearing
in mind that Δ̂† is the forward difference operator, a
calculation shows that ~ψnðxÞ ¼ x−zn − ðxþ 1Þ−zn and that
Ĥ† ~ψnðxÞ ¼ ið2zn − 1Þ ~ψnðxÞ. Using f ~ψnðxÞg, we introduce
an inner product on the space of functions spanned by
fψnðxÞg as follows. For any ψðxÞ ¼

P
ncnψnðxÞ we define

its associated state by ~ψðxÞ ¼ P
ncn ~ψnðxÞ. The inner prod-

uct of a pair of such functions ψðxÞ and φðxÞ is then defined
by hφ;ψi ¼ h ~φjψi ≔ R∞

0 ~φðxÞψðxÞdx. Alternatively stated,
since ~φðxÞ ¼ η̂φðxÞ, we have hφ;ψi ¼ hφjη̂jψi; that is,
the positive Hermitian operator η̂ plays the role of the metric
(or, equivalently, the CP operator [18]).
For Ĥ in (1) the inner-product space constructed above is

not a Hilbert space because, as we will see, the elements of
the vector space have infinite norm. However, the elements
of fψnðxÞg and those of f ~ψnðxÞg are biorthogonal provided
that fzng belongs to the nontrivial zeros of the Riemann
zeta function. To see this, let us consider the inner product
h ~ψmjψni. Observing that

~ψmðxÞ ¼ Δ̂†Δ̂ψnðxÞ ¼ Δ̂†Δ̂Δ̂−1x−zm ¼ Δ̂†x−zm ;

and recalling that ψnðxÞ ¼ Δ̂−1x−z, we find that

h ~ψmjψni ¼
Z

∞

0

dx x−z̄mΔ̂Δ̂−1x−zn

¼
Z

∞

0

dx x−1þiðEn−ĒmÞ=2: ð6Þ

Thus, if Ēm ¼ Em (that is, if the Riemann hypothesis is
correct), then (6) is a Dirac delta function 4πδðEn − EmÞ.
It follows that for m ≠ n we have

h ~ψmjψni ¼ 0 ð7Þ

in the distributional sense, as required by the biorthogon-
ality condition. In contrast, for the trivial zeros, the integral
(6) diverges too rapidly to be interpreted as a tempered
distribution.
In terms of the inner product introduced above, and

assuming that p̂ is Hermitian (symmetric), we find, using
Δ̂†Δ̂ ¼ η̂, that

hĤφ;ψi ¼
Z

∞

0

dx φ̄ðxÞΔ̂†ðx̂ p̂þp̂ x̂ÞðΔ̂†Þ−1Δ̂†Δ̂ψðxÞ

¼
Z

∞

0

dx φ̄ðxÞΔ̂†Δ̂Δ̂−1ðx̂ p̂þp̂ x̂ÞΔ̂ψðxÞ

¼ hφ; Ĥψi:

This shows that, from the assumption that p̂ is Hermitian,
we may conclude that Ĥ is Hermitian (symmetric) with
respect to the new inner product.
As a further consequence of (6) and (7), if the Riemann

hypothesis is true, then the eigenvalues of Ĥ are non-
degenerate. Conversely, if the Riemann hypothesis is false,
then the eigenstates of Ĥ that correspond to nontrivial zeros
for which ReðzÞ ≠ 1

2
coalesce to give rise to Jordan block

structures in the Hamiltonian. This follows from the fact
that at such complex degeneracies (often referred to as
exceptional points), the eigenstates satisfy the so-called
self-orthogonality condition h ~ψnjψni ¼ 0. These findings
may have an implication on whether the zeros of ζðzÞ are
simple: It is known that if the Riemann hypothesis holds
true, then at least 19=27 of the nontrivial zeros are simple
[19]. However, if there exists a one-to-one correspondence
between the boundary condition on the eigenstates of Ĥ
and the secular equation for the eigenvalues of Ĥ, then it
follows that the validity of the Riemann hypothesis implies
that all roots are simple, and conversely any nontrivial zero
of ζðzÞ for which ReðzÞ ≠ 1

2
cannot be simple.

Boundary condition revisited.—For finite-dimensional
nondegenerate matrices, the biorthogonality relation (7)
implies that Ĥ† defined in (5) is the Hermitian adjoint of Ĥ.
However, in infinite-dimensional vector spaces the com-
pleteness of the states fψnðxÞg is required to arrive at this
conclusion. Nevertheless, the relation (7) suggests that our
Hermiticity assumption of p̂ is valid, making ĥ manifestly
Hermitian.
Encouraged by this observation, we ask whether the

momentum operator p̂ is Hermitian (symmetric) on the
inner-product space defined above. Because ½p̂; η̂� ¼ 0,
the Hermiticity of p̂ on h·; ·i follows if the boundary terms
vanish under an integration by parts when the elements of
fψnðxÞg and those of f ~ψnðxÞg are paired. Note that ~ψnðxÞ
diverges at x ¼ 0, so ψnðxÞ must vanish sufficiently fast
at x ¼ 0 to ensure the vanishing of the boundary terms.
[The divergence of fψnðxÞg at x ¼ ∞ is compensated by
the vanishing of f ~ψnðxÞg as x → ∞.] One can verify that
imposing ψnð0Þ ¼ 0 is sufficient to guarantee the vanishing
of the boundary term at the origin. Thus, the Hermiticity of
p̂ on h·; ·i follows from the boundary condition ψnð0Þ ¼ 0.
Relation to quantum mechanics.—Since the operator Ĥ

is a function of the canonical variables ðx̂; p̂Þ, we have
referred to it as a Hamiltonian. However, the connection of
this Hamiltonian to physical systems is at best tenuous
because the eigenstates of Ĥ in our inner-product space are
not normalizable. This is not a concern for our analysis, but
in quantum mechanics normalizability is required for a
probabilistic interpretation.
A possible way of making a connection to quantum

theory is to introduce a regularization scheme, for example,
by letting x ∈ ½Λ−1;Λ�, renormalizing the states according
to ψnðxÞ → ðlnΛÞ−1=2ψnðxÞ, and then taking the limit
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Λ → ∞. Interestingly, the expectation value of the position
operator ρ̂−1x̂ ρ̂ in the state ψnðxÞ for any n in the
renormalized theory is Λ= lnΛ, which for large Λ gives
the leading term in the counting of prime numbers smaller
than Λ.
Discussion.—We have presented a formal argument

showing that the eigenvalues of the Hamiltonian Ĥ in
(1), whose classical limit is 2xp, correspond to the non-
trivial zeros of the Riemann zeta function. Identifying the
domain of Ĥ remains a difficult and open problem. We
hope that further analysis of the properties of Ĥ, such as
identifying its domain and establishing its self-adjointness,
will prove the reality of the eigenvalues, and thus the
veracity of the Riemann hypothesis. The possibility of
extending the Hilbert-Pólya program to non-Hermitian
PT -symmetric operators has been noted [20]. We hope
that our findings will significantly boost research in this
direction. The fact that iĤ is PT symmetric, with a broken
PT symmetry, offers a fresh and optimistic outlook.
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