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We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials
should include the Chern-Simons contribution that makes the theory consistent with the local conservation
of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use
of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant
magnetic and pseudomagnetic fields, taking into account the effects of dynamical electromagnetism.
We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal
collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only
by oscillations of the electric current density, but also by oscillations of the chiral current density. The latter
are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma
frequencies of the transverse modes split up in a magnetic field. This finding suggests an efficient means of
extracting the chiral shift parameter from the measurement of the plasma frequencies in Weyl materials.
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Introduction.—The study of the fundamental properties
of magnetized relativistic matter attracted a lot of attention
in recent years. The physical systems in question include
the plasmas in the early Universe [1] and relativistic heavy-
ion collisions [2,3], degenerate states of dense matter in
compact stars [4], and a growing number of recently
discovered three-dimensional Dirac and Weyl materials
[5–7]. To a large extent, the recent increased activity in the
studies of magnetized relativistic matter is driven by the
hope of detecting macroscopic implications of quantum
anomalies. One of such implications is the celebrated
chiral magnetic effect (CME) [8], which has been detected
indirectly in the quark-gluon plasma created in heavy-ion
collisions (for a review, see Ref. [3]), as well as in Dirac
semimetals [9]. Note that the interpretation of the heavy-ion
experiments is not without a controversy [10].
The search for macroscopic implications of quantum

anomalies is greatly facilitated by the recent discovery of
Dirac and Weyl materials, whose low-energy quasiparticle
excitations are described by relativisticlike equations.
Indeed, unlike most forms of truly relativistic matter, these
novel condensed matter materials open the possibility for
revealing and testing many anomalous effects in magnet-
ized matter in tabletop experiments under controlled con-
ditions. Moreover, they may even allow for modeling
phenomena that are impossible in relativistic physics. A
specific example is provided by a background pseudomag-
netic (or, equivalently, axial magnetic) field B5, which can
be effectively produced by a mechanical strain in Dirac and
Weyl materials [11–14]. In essence, the pseudomagnetic

field B5 resembles the ordinary magnetic field B, but acts
on opposite chirality quasiparticles so as if they had
opposite charges. In the case of the Dirac semimetal
Cd3As2, for example, the estimated strength of the
strain-induced pseudomagnetic field could range from
about B5 ≈ 0.3 T in twisted nanowires [14] to B5 ≈ 15 T
in bended thin films [15]. Similarly, a pseudoelectric field
E5 can be generated by time-dependent deformations.
Collective excitations are simple but informative probes of

plasma properties [16]. It is natural to ask, therefore, whether
such modes in chiral plasmas can be affected by quantum
anomalies. The authors of Ref. [17] proposed that the chiral
anomaly implies the existence of a new type of collective
excitation, i.e., the chiral magnetic wave (CMW), that origi-
nates from an interplay of chiral and electric charge density
waves. In thisLetter,wewill investigate thecollectivemodes in
Weylmaterials,usingtheframeworkof thechiralkinetic theory
with a proper treatment of dynamical electromagnetism.
The central idea of this Letter is to use the correct definition

of the electric current in the chiral kinetic theory for Weyl
materials with strain-induced pseudoelectromagnetic fields.
As we show, the current should necessarily include the
Chern-Simons contribution, which is also known as the
Bardeen-Zumino polynomial [18]. Such a correction restores
the local conservation of the electric charge in the case of
general electromagnetic and pseudoelectromagnetic fields.
In addition, this topological term affects the properties of
collective modes. For example, their plasma frequencies
acquire a dependence on the chiral shift parameter, i.e., the
momentum-space separation between the Weyl nodes.
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Model.—The chiral kinetic theory is a semiclassical
theory, which describes the time evolution of the one-
particle distribution functions fλ for the right- (λ ¼ þ) and
left-handed (λ ¼ −) fermions. In the collisionless limit
(assuming that the frequency of collective excitations ω is
much larger than inverse relaxation time 1=τ), the kinetic
equations are given by [19,20]

∂fλ
∂t þ ½e ~Eλ þ e

c ðv ×BλÞ þ e2
c ð ~Eλ · BλÞΩλ� · ∇pfλ

1þ e
c ðBλ ·ΩλÞ

þ ½v þ eð ~Eλ ×ΩλÞ þ e
c ðv ·ΩλÞBλ� · ∇rfλ

1þ e
c ðBλ ·ΩλÞ

¼ 0; ð1Þ

where Eλ ¼ Eþ λE5 and Bλ ¼ Bþ λB5 are effective
electric and magnetic fields for fermions of chirality λ,
Ωλ ¼ λℏp=ð2p3Þ is the Berry curvature [21], p≡ jpj,
~Eλ¼Eλ−ð1=eÞ∇rϵp, and the factor 1=½1þ eðBλ ·ΩλÞ=c�
accounts for the correct phase-space density of chiral states
in an effective magnetic field [22]. By making use of the
fermion dispersion relation, valid up to the linear order in
the background magnetic field Bλ [20],

ϵp ¼ vFp½1 − ðe=cÞðBλ ·ΩλÞ�; ð2Þ
we derive the quasiparticle velocity v ¼ ∇pϵp, i.e.,

v ¼ vF
p
p

�
1þ 2

e
c
ðBλ ·ΩλÞ

�
−
evF
cp

Bλðp ·ΩλÞ: ð3Þ

Here, vF is the Fermi velocity.
The equilibrium distribution functions for chiral fer-

mions are given by the standard Fermi-Dirac distributions

fðeqÞλ ¼ ½eðϵp−μλÞ=T þ 1�−1; ð4Þ
where T is the temperature (measured in energy units),
and μλ ¼ μþ λμ5 are the effective chemical potentials for
the right- and left-handed fermions. Note that μ and μ5 are
the electric and chiral chemical potentials, respectively. The

distribution functions for antiparticles f̄ðeqÞλ are obtained
by replacing μλ → −μλ. In addition, for antiparticles, one
should replace e → −e and Ωλ → −Ωλ.
The charge and current densities are given by [20]

ρλ ¼
X
p;a

e
Z

d3p
ð2πℏÞ3

�
1þ e

c
ðBλ ·ΩλÞ

�
fλ; ð5Þ

jλ ¼
X
p;a

e
Z

d3p
ð2πℏÞ3

�
v þ e

c
ðv ·ΩλÞBλ þ eð ~Eλ ×ΩλÞ

�
fλ

þ
X
p;a

e∇ ×
Z

d3p
ð2πℏÞ3 fλϵpΩλ; ð6Þ

where
P

p;a denotes the summations over particles and
antiparticles and the last term describes a magnetization
current.

Local charge nonconservation.—By using Eqs. (1), (5),
and (6) together with the Maxwell’s equations, one can
easily derive the following continuity equations for the
chiral and electric currents:

∂ρ5
∂t þ ∇ · j5 ¼

e3

2π2ℏ2c
½ðE ·BÞ þ ðE5 · B5Þ�; ð7Þ

∂ρ
∂t þ ∇ · j ¼ e3

2π2ℏ2c
½ðE ·B5Þ þ ðE5 ·BÞ�: ð8Þ

The first equation is related to the celebrated chiral anomaly
[23] and expresses the nonconservation of the chiral charge
in the presence of electromagnetic or pseudoelectromagnetic
fields. Physically, this nonconservation can be understood as
the pumping of the chiral charge between the Weyl nodes
of opposite chiralities. The second equation describes the
anomalous local nonconservation of the electric charge in
electromagnetic and pseudoelectromagnetic fields.
The local nonconservation of the electric charge is a very

serious problem. If taken at face value, it would imply that
the electric charge is literarily created out of nothing. It was
suggested in Refs. [13,14] that it may correspond to the
pumping of the charge between the bulk and the boundary
of the system. However, it is unclear how such a spatially
nonlocal process could resolve the problem.
As we argue below, the resolution of the problem is much

simpler. It lies in the fact that Eqs. (7) and (8) are the so-called
covariant anomaly relations that come from the fermionic
sector of the theory in which left- and right-handed fermions
are treated in a symmetric way. Just like in quantum field
theory, this is inconsistent with the gauge symmetry. The
correct physical currents, satisfying the local conservation
of the electric charge, are the consistent currents [24]. A
very clear discussion of these concepts in the framework of
a low-energy effective theory is given in Ref. [25]. Clearly,
the same should apply to the chiral kinetic theory. This means
that one should add the following topological contribution to
the electric four-current density [18,24,25]:

δjμ ¼ e3

4π2ℏ2c
ϵμνρλA5

νFρλ; ð9Þ

whereA5
ν ¼ bν þ ~A5

ν is the axial vector potential, which is an
observable quantity. Indeed, in Weyl materials, b0 and b
correspond to the energy and momentum-space separations
between the Weyl nodes. On the other hand, ~A5

ν is expressed
through the deformation tensor and describes strain-induced
axial (pseudoelectromagnetic) fields. (Note that there is also a
correction to the chiral current density, but it contains only
pseudoelectromagnetic fields [25] and, thus, will not affect
the plasmon properties, discussed later.) In components,
Eq. (9) takes the following form:

δρ ¼ e3

2π2ℏ2c2
ðA5 · BÞ; ð10Þ
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δj ¼ e3

2π2ℏ2c
A5
0B −

e3

2π2ℏ2c
ðA5 ×EÞ: ð11Þ

For B5 to be nonzero, the axial field ~A5 should depend on
coordinates. We will assume, however, that such a depend-
ence is weak and ~A5 in Eqs. (10) and (11) is negligible
compared to the chiral shift b.
As is easy to check, the consistent current Jμ¼ðcρþcδρ;

jþδjÞ is nonanomalous ∂μJμ ¼ 0; therefore, the electric
charge is locally conserved. Note that the consistent current
plays an important role even in the absence of strain-
induced pseudoelectromagnetic fields. For example, in the
equilibrium state with μ5 ¼ −eb0, the first term in Eq. (11)
exactly cancels the corresponding CME current in j as
argued in Ref. [25]. This also agrees with the analysis based
on the band theory of solids [26]. In addition, the second
term in δj correctly captures the anomalous Hall effect in
Weyl materials [27], that otherwise would be missing in the
chiral kinetic theory.
Collective excitations.—By making use of the consistent

current, we study the spectrum of collective excitations
in the Weyl material in a constant background field
B0;λ ≡B0 þ λB0;5. For the sake of simplicity, we assume
that a static strain-induced pseudomagnetic field B0;5 is
parallel to the magnetic field B0. (We choose B0 to point in
the þz direction.) Note that, in principle, collective modes
could drive dynamical deformations of the Weyl material,
which, in turn, induce oscillating pseudoelectromagnetic
fields E0

5 and B0
5. However, the corresponding fields are

extremely weak and can be safely neglected in the analysis
of the plasmon modes.
Our analysis of the electromagnetic collective modes

follows the standard approach of physical kinetics [16],
albeit generalized to the case of chiral fermions with a
nonzero Berry curvature. As usual, the solution is sought
in the form of plain waves, i.e., E0 ¼ Ee−iωtþik·r and
B0 ¼ Be−iωtþik·r, where ω is the frequency and k is the
wave vector. The matter effects are captured by the
polarization vector

P0m ¼ χmlE0l ¼ iJ0m=ω; ð12Þ
where χml is the electric susceptibility tensor and m, l ¼ 1,
2, 3 are the spatial indices. The dispersion relations of the
collective modes follow from the characteristic equation for
the in-medium Maxwell’s equations [16]:

det ½ðn20ω2 − c2k2Þδlm þ c2klkm þ 4πω2χlm� ¼ 0; ð13Þ
where we included the background refractive index n0. In
the case of the Weyl semimetal TaAs, for example, n0 ≈ 6
[28]. In this Letter, in order to simplify our analysis, we will
neglect the dependence of n0 on the frequency. Also, we
will discuss the properties of the collective modes only in
the limit k ¼ 0. The general case with k ≠ 0 will be

reported elsewhere. In order to determine the electric
susceptibility tensor, we use the consistent chiral kinetic
theory, which includes the contribution to the electric
current due to the Bardeen-Zumino polynomial given by
Eq. (11). The distribution function is taken in the form

fλ ¼ fðeqÞλ þ f0λ, where f
ðeqÞ
λ is the equilibrium distribution

function (4) and f0λ ¼ fð1Þλ e−iωt is a perturbation. To leading
linear order in oscillating fields, the solution to the kinetic
equation (1) reads

fð1Þλ ≃ −i
evF
pω

∂fðeqÞλ

∂ϵp
�
ðp ·EÞ

�
1þ λℏeðB0;λ · pÞ

2cp3

�

− iðp · ½B0;λ ×E�Þ evF
cpω

�
: ð14Þ

Similar to the situation in a magnetized nonrelativistic

plasma [16], the leading-order perturbation fð1Þλ is propor-
tional to the magnitude of the oscillating electric field.
By making use of this solution, we derive the following
result for the polarization vector:

P0 ¼ a0
4π

E0 þ a1
4π

ðb × E0Þ þ a2
4π

ðE0 × ẑÞ; ð15Þ

where ẑ is the unit vector in the þz direction and

a0 ¼ −
n20Ω2

e

ω2
; a1 ¼ −i

2en20αvF
πcωℏ

; ð16Þ

a2 ¼ −i
2en20αv

2
F

3πωc

X
λ¼�

�
B0;λμλ
ℏ2ω2

−
B0;λ

4T
F

�
μλ
T

��
: ð17Þ

Here, we introduced the shorthand notations for the coupling
constant α ¼ e2=ðℏvFn20Þ, the Langmuir frequency

Ωe ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α

3πℏ2

�
μ2 þ μ25 þ

π2T2

3

�s
; ð18Þ

and the following function of νλ ≡ μλ=T:

FðνλÞ≡ −T
Z

dp
p

�∂fðeqÞλ

∂ϵp −
∂f̄ðeqÞλ

∂ϵp
�
: ð19Þ

Note that the high- and low-temperature asymptotes of this
function are given by FðνλÞ≃ 0.426νλ for νλ → 0 and
FðνλÞ≃ 1=νλ for νλ → ∞, respectively.
While the first term in Eq. (15) describes the high-

frequency version of the Ohm’s law, the second term comes
from the part of the topological current in Eq. (11)
responsible for the anomalous Hall effect [27]. The last
term in Eq. (15), which is proportional to the background
magnetic and pseudomagnetic fields in view of Eq. (17),
describes the usual Faraday rotation as well as its anoma-
lous counterpart.
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By making use of Eqs. (12), (13) and (15), we obtain the
spectral equation for the collective modes at k ¼ 0

ðn20 þ a0Þfðn20 þ a0Þ2 þ a21b
2⊥ þ ða2 − a1b∥Þ2g ¼ 0;

ð20Þ

where we introduced the transverse b⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x þ b2y

q
and

longitudinal b∥ ¼ bz components of the chiral shift. Notice
that the spectral equation is explicitly factorized. The
corresponding approximate solutions are

ωl ¼ Ωe; ω�
tr ¼ Ωe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δΩe=Ωe

p
; ð21Þ

where

δΩe ¼
2eαvF
3πcℏ2

�
9ℏ2b2⊥ þ

�
2vF
Ω2

e
ðB0μþ B0;5μ5Þ

− 3ℏb∥ −
vFℏ2

4T

X
λ¼�

B0;λF

�
μλ
T

��
2
�

1=2
: ð22Þ

In the absence of the chiral shift, the collective modes (21)
correspond to the longitudinal (E0∥ẑ) and transverse
(E0⊥ẑ) waves. Moreover, Eq. (21) means that the effects
of dynamical electromagnetism transform, as argued in
Ref. [17], the CMW into a longitudinal plasmon, whose
frequency coincides exactly with the Langmuir one at linear
order in the pseudomagnetic field. It is interesting to point
out that the combined effect of the pseudomagnetic field
B0;5 and the chiral chemical potential μ5 on the collective
modes is similar to that of the magnetic field B0 and the
electric chemical potential μ. The qualitative dependence
of the plasma frequencies (21) on the magnetic field B0 is
presented graphically in Fig. 1 at fixed values of b⊥ and b∥.
According to the upper panel in Fig. 1, the plasma

frequencies of all three collective modes are different when
b⊥ ≠ 0. In this case, the smallest splitting occurs at B0 ¼ 0,
where ωþ

tr − ω−
tr ≈ δΩe ¼ 2eαvFb⊥=ðπcℏÞ.

The situation is quite different in the case when b⊥ ¼ 0,
but b∥ ≠ 0. This is demonstrated in the lower panel of
Fig. 1. Now, while the three plasmons have generically
different frequencies, one can make them degenerate by
tuning the value of the magnetic field. The corresponding
value of the magnetic field B⋆

0 , at which the frequency
splitting vanishes, is given by

B⋆
0 ¼ −

4T½2vFB0;5μ5 − 3ℏΩ2
eb∥�

vF½8Tμ − ℏ2Ω2
e
P

λ¼�FðμλT Þ�

þ B0;5ℏ2Ω2
e
P

λ¼�λFðμλT Þ
8Tμ − ℏ2Ω2

e
P

λ¼�FðμλT Þ
: ð23Þ

Chiral magnetic plasmons.—It is worth discussing the
chiral features of the collective excitations in more detail. It
appears that these modes, including the longitudinal one,
which describes the CMW with the effects of dynamical
electromagnetism taken into account, are chiral plasmons,

or rather, chiral magnetic plasmons when a background
magnetic field is present. Their chiral nature is evident from
the fact that they are accompanied by oscillations of not
only the electric, but also the chiral current density. The
result for the oscillating part of the electric current density
is clear from the polarization vector if one uses Eqs. (12)
and (15). As for the oscillating part of the chiral current
density, it is given by the following expression:

J05 ¼ sin ðωtÞE 2αn20μμ5
3π2ℏ2ω

− cos ðωtÞðE × ẑÞ eαn
2
0v

2
F

6π2c

×
X
λ¼�

�
λB0;λμλ
ℏ2ω2

−
λB0;λ

4T
F

�
μλ
T

��
; ð24Þ

which is obtained using Eqs. (6) and (14). It is important
to emphasize the topological origin of the first term in
Eq. (24), which does not depend on temperature. In
essence, it comes from a dynamical version of the chiral
electric separation effect [29]. The second term in Eq. (24)
is related to a generalized Lorentz force.
Wewould like tonote that thepredicted frequencies and the

splitting of plasmon frequencies as functions of an applied
strain and/ormagnetic field canbe easily tested in experiment.
As in the case of usual plasmons, this can be done by
measuring the intensity and the phase shift of electromagnetic
waves transmitted through a thin film of aWeyl material. The
frequencies of transverse modes could be obtained from
the peaks in the real part of optical conductivity, while the

FIG. 1. The dispersion relations of collective modes given
by Eq. (21) at fixed b⊥ ¼ 0.2ℏΩe=e (upper panel) and b∥ ¼
0.2ℏΩe=e (lower panel). The electric chemical potential equals
μ ¼ ℏΩe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π=ð4αÞp

, B0;5 ¼ 0, and the temperature is zero.
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frequency of the longitudinal mode can be extracted from the
energy loss function (e.g., see Ref. [30]).
Depending on the choice of a Weyl material, the

estimated frequencies of the chiral magnetic plasmons
could vary a lot. In Weyl semimetals, such as NbP and
TaAs, for example, the averaged Fermi velocity is about
vF ≈ 2 × 107 cm=s [31]. The corresponding Langmuir
frequency may vary in a rather wide range between
1 THz to 100 THz, depending on the actual values of
the Fermi energy and temperature. The range of magnitude
of the splitting between the transverse modes is more
narrow, i.e., ωþ

tr − ω−
tr ≈ 0.3b⊥½Å−1� THz, where the value

of the chiral shift parameter b⊥ varies from about
4 × 10−3 Å−1 (NbAs) to about 3 × 10−2 Å−1 (TaAs) [31].
Conclusion.—As we showed in this Letter, the consistent

chiral kinetic theory in Weyl materials should necessarily
include the topological Chern-Simons contribution that
ensures the local conservation of the electric charge in
electromagnetic and strain-induced pseudoelectromagnetic
fields. Moreover, as we emphasized, such a term plays an
important role even in the absence of pseudoelectromag-
netic fields. It allows one to correctly describe the anoma-
lous Hall effect in Weyl materials [27] and to reproduce the
vanishing CME current in an equilibrium state of chiral
plasma [25,26]. Furthermore, the topological term also
affects the spectra of collective modes.
As demonstrated here, the collective modes in Weyl

materials are the chiral plasmons with interesting proper-
ties. Such modes are associated with the oscillations of both
electric and chiral current densities. This is in contrast to the
ordinary electromagnetic plasmons, which are not con-
nected with the oscillations of the chiral current density. It
is worth mentioning that for the longitudinal mode, which
corresponds to the CMW, these oscillations are of purely
topological origin and are related to a dynamical version of
the chiral electric separation effect.
While the plasma frequency of the longitudinal mode

coincides with the Langmuir one, the frequencies of the
transverse modes generically split up. The frequency
splitting depends on both magnetic (pseudomagnetic) field
and electric (chiral) chemical potential. As we showed, the
qualitative features of this dependence on the magnetic
field can be used to develop a protocol for experimentally
extracting both the direction and magnitude of the chiral
shift parameter in Weyl materials.
In this Letter, the study was restricted to the long-

wavelength limit (k ¼ 0) of the chiral magnetic plasmons
and used an expansion to the linear order in background
magnetic and pseudomagnetic fields. The generalization of
this investigation to the case of nonzero wave vectors
(k ≠ 0) and higher orders in magnetic and pseudomagnetic
fields will be reported elsewhere.
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