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The twoprimary categories for eigenstate phases ofmatter at a finite temperature aremany-body localization
(MBL) and the eigenstate thermalization hypothesis (ETH).We show that, in the paradigmatic quantump-spin
models of the spin-glass theory, eigenstates violate the ETH yet are notMBL either. Amobility edge, whichwe
locate using the forward-scattering approximation and replica techniques, separates the nonergodic phase at a
small transversefieldfromanergodicphaseata largetransversefield.Thenonergodicphaseisalsoboundedfrom
aboveintemperature,byatransitioninconfiguration-spacestatisticsreminiscentoftheclusteringtransitioninthe
spin-glass theory. We show that the nonergodic eigenstates are organized in clusters which exhibit distinct
magnetization patterns, as characterized by an eigenstate variant of the Edwards-Anderson order parameter.
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Many systems under experimental investigation as plat-
forms for many-body localization (MBL) [1–9] have long-
range interactions that mediate the direct transport of
excitations. This includes disordered electronic materials
[10,11], ion traps [12], interacting nitrogen-vacancy centers
in diamond [13,14], and superconducting qubit devices
developed for adiabatic quantum computing [15–17]. In
sufficiently long-ranged systems, the proliferation of long-
distance resonances precludes quantum mechanical locali-
zation [18–22], an intuitive result strongly supported by
analytic work over the past half century. Nevertheless, the
quantum random energy model (QREM), an infinite-range
spin glass, was recently shown to exhibit a phase with
localized eigenstates at a finite energy density [23,24]. The
QREM provides an analytically tractable framework for
studying mobility edges and configuration-space localiza-
tion. This raises the obvious question of how localization
survives despite the infinite-range interactions and what
role it plays in more realistic long-range systems.
Some insight comes from considering the distribution of

local fields—i.e., the energy required to flip one of the
system’s N spins relative to a given configuration. In the
QREM, flipping a spin typically changes the energy by
OðNÞ. Thus, the quantum fluctuations which lead to the
proliferation of resonances are strongly suppressed.
However, short-range models have Oð1Þ local fields,
and, in fact, so do power-law and infinite-range systems
with general p-body interactions. This suggests that the
eigenstate-localized phase of the QREM is an exceptional
case among long-range models: Strict configuration-space
localization cannot exist in any model with Oð1Þ local
fields, since the introduction of quantum dynamics causes
resonant fluctuations.

In this Letter, we study the eigenstate properties of the
quantum p-spin models [25–28]. Over the past four
decades, these models have become paradigms for the
mean-field theory of spin glasses [29–32], particularly
the Sherrington-Kirkpatrick model (p ¼ 2) [33,34]. The
QREM corresponds to the p → ∞ limit in many senses,
but the local-field distribution remains Oð1Þ in any
finite-p model. Consequently, the QREM’s phase of
localized eigenstates gives way to a phase of delocalized
yet nonergodic eigenstates (blue in Fig. 1), similar to
what was observed in the context of single-particle
localization on the Bethe lattice [35–37]. This is in
contrast to the fully delocalized paramagnetic phase
(orange in Fig. 1), in which eigenstates satisfy the
eigenstate thermalization hypothesis (ETH) [38–40]
and exhibit thermal behavior.
The formal distinction that we make between ergodic,

nonergodic, and MBL eigenstates concerns the off-
diagonal matrix elements of local operators between them.
Schematically, denote by σ̂ any operator supported onOð1Þ
spins and consider the state σ̂jΨi (with jΨi an eigenstate).
According to the ETH [41], the overlap with any other
eigenstate jΦi at the same energy density ϵ should scale as
hΦjσ̂jΨi∼f1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp½NseqðϵÞ�
p ggðϵ;EΨ−EΦÞ, where seqðϵÞ

is the thermodynamic entropy density and g is a smooth
function of ϵ and the energy difference. Our analysis below
suggests that the eigenstates of the ETH phase in Fig. 1
obey this scaling. On the other hand, in a MBL phase σ̂jΨi
should have significant weight only on Oð1Þ-many eigen-
states [2], a notion one can make precise through a
participation ratio [e.g.,

P
ΦjhΦjσ̂jΨij4 ∼Oð1Þ]. We find

that the eigenstates of the nonergodic phase do not obey
this definition of MBL, even though they violate the ETH.
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Rather, they are organized into “clusters” (defined below).
Within a cluster c, eigenstates follow ETH-type scaling:

hΦðcÞjσ̂jΨðcÞi ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ½NscðϵÞ�

p gcðϵ; EΨ − EΦÞ; ð1Þ

but off-diagonal matrix elements between clusters are
heavily suppressed (c ≠ c0):

hΦðc0Þjσ̂jΨðcÞi ≪ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ½NseqðϵÞ�

p : ð2Þ

Here, j · ðcÞi and j · ðc0Þi are eigenstates belonging to each
cluster. scðϵÞ is the entropy density within c [which is
strictly less than seqðϵÞ], and gc is a smooth, cluster-
dependent Oð1Þ function. More physically, such nonergo-
dic eigenstates are thermal within a cluster but not thermal
in the configuration space as a whole.
Concretely, the quantum p-spin models are defined by

Hp ¼ −
X

ði1…ipÞ
Ji1…ip σ̂

z
i1
…σ̂zip − Γ

XN
i¼1

σ̂xi ≡HC
p þHQ; ð3Þ

where the classical term HC
p sums over all distinct p-tuples

of N spins and the quantum term HQ provides a uniform
transverse field. The random couplings Ji1…ip are indepen-
dent identically distributed Gaussians of mean 0 and
variance ðp!=2Np−1Þ, to ensure extensivity. It is known
[25] that the thermodynamic free energy of Hp approaches
that of the QREM as p increases. The eigenstate phases
of Hp do as well, yet the eigenstates are never localized at
any finite p. They are instead nonergodic, in a manner that
comes to resemble localization as p increases. We show
this by studying the eigenstates within the perturbation
theory and the forward-scattering approximation [42].

Before we turn to a detailed analysis, it is useful to
consider the p-spin models in terms of Anderson locali-
zation on the N-dimensional hypercube defined by the σz

configuration space.HC
p is then a random potential, andHQ

causes hops along the edges of the hypercube. The QREM
corresponds to an uncorrelated Gaussian random potential
of bandwidth

ffiffiffiffi
N

p
. This bandwidth models that of a many-

body system with an extensive spectrum, but the lack of
correlations implies unrealistically large local fields. In the
p-spin model, the potential remains Gaussian but exhibits
correlations which restrict the energy differences between
adjacent sites to be OðpÞ. This leads to the entropically
large clusters over which the eigenstates delocalize at a
short fractional Hamming distance (see below). The phase
transition at a finite transverse field shown in Fig. 1
corresponds to eigenstates tunneling between clusters. To
obtain the eigenstates, we must first consider the correla-
tions in the classical energy landscape in more detail. At
Hamming distance Nx from a given configuration with
energy Nϵ0, the Gaussian random potential obeys a condi-
tional distribution [29]

PxðϵÞ ∝ exp

�
−N

½ϵ − ð1 − 2xÞpϵ0�2
1 − ð1 − 2xÞ2p

�
: ð4Þ

Intuitively, configurations at distance x≲ ð1=pÞ have
similar energies and reduced fluctuations relative to inde-
pendently sampled states, as a result of the Oð1Þ local
fields. See Ref. [43], Sec. B, for more details.
Using Eq. (4), the average number of states at

fractional distance x with energy density ϵ matching ϵ0
is ð NNxÞPxðϵ0Þ ∼ eNsðxÞ, with

sðxÞ ¼ −x ln x − ð1 − xÞ ln ð1 − xÞ − 1 − ð1 − 2xÞp
1þ ð1 − 2xÞp ϵ

2
0:

ð5Þ
In order to compare with the literature, it is useful to
parametrize ϵ0 through the temperature T defined by a
formal Legendre transform, even when the system fails to
thermalize dynamically. It is shown in Ref. [43], Sec. A,
that ϵ0 ¼ −ð1=2TÞ þOð1=p2Þ. Equation (5) is an annealed
average which provides a rigorous upper bound for the
typical number of states, since E½ln…� ≤ lnE½…�. When
sðxÞ < 0, we know with certainty that there are no
configurations at x with energy density ϵ0.
The entropy sðxÞ is plotted in Fig. 2 for p ¼ 6 as an

illustration. A transition occurs at the temperature T�.
At T > T�, there are configurations over the entire range
of x, whereas at T < T�, there is a “forbidden” region
(x�ðTÞ; x��ðTÞ) in which no configurations lie. We have
rigorously confirmed the presence of three distinct regions
via a second-moment analysis, analogous to that done in
Ref. [44]. See Ref. [43], Sec. D, for details. Thus, the
configurations at energy ϵ0 form disconnected clusters of

FIG. 1. The T − Γ phase diagram of the quantum p-spin model,
sketched for arbitrary p. The indicated T and Γ values scale as
Ts¼Oð1Þ, T�≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp=4lnpÞp

, Γ�≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlnp=pÞp
, and ΓGS ¼ Oð1Þ.

Solid red lines are phase boundaries obtained through the
imaginary-time replica formalism [25], and the solid blue line
is the eigenstate phase boundary. The corresponding dashed red
and blue lines are those of the QREM (p → ∞ limit).
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Hamming size x�ðTÞ. Energy levels within a cluster are
highly correlated, but those of different clusters are
essentially independent [see Eq. (4)]. This behavior is
analogous to the clustering observed in, e.g., k-SAT
problems [44], coloring of random graphs [45], and the
replica theory of spin glasses [46,47].
By setting sðxÞ ¼ ∂xsðxÞ ¼ 0, we find that

T� ¼
ffiffiffiffiffiffiffiffiffiffiffi
p

4 lnp

r �
1þO

�
ln lnp
lnp

��
: ð6Þ

Note that T� → ∞ as p → ∞. Furthermore, at T ≪ T�,
x�ðTÞ ∼ e exp ½−ð1=4T2Þp�, whereas x��ðTÞ ∼Oð1Þ (with
respect to p). Thus, the clusters below T� are well
separated, and they become arbitrarily small as p increases.
Regardless, the clusters cover a macroscopic Hamming
distance at any finite p.
With this understanding of how the classical states at

energy density ϵ0 are organized, we now introduce a small
transverse field Γ and study the eigenstates within the
perturbation theory. Let jΨαi be the eigenstate that results
from perturbing the classical configuration jαi, and let jβi
be another classical state separated by Hamming distance
Nx. Since the perturbation −Γ

P
iσ̂

x
i flips a single spin at

each order, the leading nonzero contribution to hβjΨαi
arises at the Nxth order. In the forward-scattering approxi-
mation (FSA), we retain only this contribution for each
configuration jβi. Note that many terms nonetheless
contribute to hβjΨαi: one for each of the ðNxÞ! distinct
sequences of spin flips that transform jαi into jβi. Thus,
within the FSA,

hβjΨαi ≈
Γ

Eα − Eβ

X
P

Y
γ∈P

Γ
Eα − Eγ

: ð7Þ

The sum runs over the sequences P, and the product runs
over each intermediate configuration jγi along sequence P.

Note that Eq. (7) is indeed Nxth order in Γ. See [24,42] for
more explicit derivations.
Before turning to a quantitative analysis of Eq. (7), let us

sketch the key ideas. Even for small Γ, the amplitude
hβjΨαi can be large if the denominators in Eq. (7) are small.
We will find that such “resonances” show up at small
distances x regardless of T (i.e., ϵ0 ≡ Eα=N) and Γ. The
large amplitudes appear to invalidate our perturbative
expansion. However, a more accurate treatment regulates
them by introducing self-energy corrections [18].
Furthermore, for T < T� there is the tunneling region
ðx�; x��Þ in which resonances cannot exist (see Fig. 2).
Here the self-energy corrections are negligible. Thus, the
naïve FSA accurately estimates the suppression of ampli-
tude due to tunneling through this forbidden region. If it
predicts that every amplitude at x > x�� is exponentially
suppressed, then we know that the eigenstates do not
delocalize across the forbidden region and are nonergodic.
There turns out to be a critical ΓcðTÞ below which
eigenstates are nonergodic in precisely this sense.
Rather than introducing self-energies, an alternative

approach to account for the short-distance resonances is
the degenerate perturbation theory. Although precise cal-
culations along these lines are infeasible, we expect the
resulting eigenstates to have amplitudes uniformly distrib-
uted across all resonant configurations, as in the random
matrix theory. Restarting the perturbation theory from these
hybridized states leads to new resonances which must
themselves be included in the degenerate perturbation
theory, leading to yet further resonances, and so on. At
T < T�, this process terminates when all degenerate states
at x < x� have been incorporated. We accordingly expect
the eigenstates to appear thermal with respect to this short-
distance cluster [cf. Eq. (1)]. If Γ < ΓcðTÞ, the eigenstates
are nonetheless nonergodic for the reasons outlined above.
Yet, if Γ > ΓcðTÞ, we find further resonances in other
clusters. Since these states hybridize not just within but
between clusters, we expect them to be fully ergodic.
Similarly, at T > T� there is no forbidden region and
nothing prevents every configuration at T from hybridizing.
Here we expect full ergodicity at any Γ. This is illustrated
in Fig. 1.
We now quantitatively demonstrate the existence of

the nonergodic phase at T < T� and locate its phase
boundary ΓcðTÞ. Specifically, we count the number of
resonant configurations β at distance x, i.e., those that
have jhβjΨαij ≥ A, where A is any Oð1Þ number. We
evaluate the sum over paths in Eq. (7) using a replica
analysis (see [43], Secs. E and F), [46] to find its typical
behavior. When jEα − Eβj is less than the resulting
tunneling amplitude, β is resonant. The expected number
of resonances at distance x is then given by eNfðxÞ (see
[43], Sec. F), where

FIG. 2. The annealed Hamming-distance-resolved entropy sðxÞ
(for p ¼ 6). x is the fractional Hamming distance relative to a
configuration conditioned to have energy density ϵ0 ¼ −ð1=2TÞ.
Note that these curves are for Γ ¼ 0. Red curve, T ¼ 0.83. Purple
curve, T ¼ 0.69. Blue curve, T ¼ 0.63.
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fðxÞ ¼
Z

x

0

dy ln
1

1 − ð1 − 2yÞp þ x ln
xΓ
ejϵ0j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

typical value of the sum in Eq: ð7Þ

−x ln x − ð1 − xÞ ln ð1 − xÞ − 1 − ð1 − 2xÞp
1þ ð1 − 2xÞp ϵ

2
0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

number of degenerate configs: at x ½i:e :; sðxÞ�

: ð8Þ

Analogous to sðxÞ, fðxÞ < 0 means that every configu-
ration at distance x has an amplitude that vanishes with
certainty as N → ∞.
Figure 3 shows the three different qualitative behaviors

of fðxÞ as T and Γ are varied. Each corresponds to one of
the cases described above. For T ≪ T� (bottom two curves,
Fig. 3), there are resonances at x < x�, belonging to the
same cluster (see the inset). Resonances belonging to
different clusters appear only when Γ exceeds a critical
ΓcðTÞ (middle curve). In line with the comments above, we
should treat the intracluster resonances via the degenerate
perturbation theory before considering larger distances.
However, since intracluster resonances cannot extend past
x� ≪ Oð1Þ, this effect gives only subleading corrections to
the number of resonances in other clusters. At T > T� (top
curve), one can no longer define separate clusters, and we
find resonances throughout the configuration space. The
FSA is certainly not valid in this regime—it merely
confirms the consistency of our results.
It is straightforward to determine ΓcðTÞ from Eq. (8): It is

defined by where the maximum of fðxÞ over all x > x�ðTÞ
is 0. The result (see [43], Sec. F), is the portion of the blue
curve below T� in Fig. 1. To within Oð1=pÞ corrections, it
is identical to that of the QREM [24]. Since T� diverges as
p increases, we find that the nonergodic phase of Hp

does indeed map continuously onto the MBL phase of
HQREM.
The fact that eigenstates at low T and small Γ are

nonergodic has important consequences for their proper-
ties, many of which are commonly associated with MBL.
One prominent observable in the spin-glass theory is the

Edwards-Anderson order parameter qEA ≡ ð1=NÞPihσii2,
where the average is with respect to the Gibbs dis-
tribution. We define an eigenstate variant qESðΨÞ≡
ð1=NÞPihΨjσzi jΨi2. Note that qESðΨÞ ¼ qEA whenever
the ETH holds. Heuristically, qESðΨÞ measures how
similar the configurations are for which jΨi has a signifi-
cant amplitude. qESðΨÞ ∼ 1 means that measuring the
σz configuration within state jΨi will consistently give
macroscopically similar results. One can then associate
a specific magnetization pattern to jΨi. As shown in
Ref. [43], Sec. G, in the nonergodic phase of Hp,

qES ¼ 1 −
4Γ2T2

p2
þ � � � : ð9Þ

Compare to ergodic eigenstates in the paramagnetic phase,
which have qES ¼ 0.
The level statistics in the nonergodic phase is Poisson as

well, just as in many-body-localized systems. Regardless
of how the eigenstates hybridize within a cluster, they
cannot do so over more than the total number of configu-
rations in the cluster, which is eN exp ð−pϵ2

0
Þ (see [43], Sec. C).

These levels strongly repel and have Gaussian Orthogonal
Ensemble statistics, but the spacing between them scales no
smaller than e−N exp ð−pϵ2

0
Þ. Yet different clusters have

independent fluctuations in energy levels, and the number
of clusters is at least eN½ln 2−ϵ2

0
−exp ð−pϵ2

0
Þ� ≫ eN exp ð−pϵ2

0
Þ. The

spectra of different clusters interpenetrate, so the level
statistics is Poisson. This is sketched in Fig. 4.
It is important to bear in mind that, although we give

many analytic results only asymptotically in large p, the
phenomenology that we have described here applies for all
p, including those most likely to be experimentally realized
(p ¼ 2, 3) [48,49]. The existence of the nonergodic phase
relies only on clustering in configuration space, which is

FIG. 3. The annealed entropy of resonances fðxÞ (for p ¼ 20).
x is the fractional Hamming distance relative to an unperturbed
state with energy density ϵ0 ¼ −ð1=2TÞ. The inset shows fðxÞ at
very small x. Red curve, ðT;ΓÞ ¼ ð2.27; 0.50Þ. Green curve,
ðT;ΓÞ ¼ ð1.56; 0.50Þ. Blue curve, ðT;ΓÞ ¼ ð1.39; 0.50Þ.

FIG. 4. A sketch of Hp ’s eigenvalues in the nonergodic phase
(y axis), organized by the cluster to which each eigenstate belongs
(x axis).
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known to occur for all p [31,32,50]. The clustering
phenomenon even extends beyond the p-spin models,
making our results also relevant for, e.g., quantum annealing
experiments on combinatorial optimization problems [16].
Since the nonergodic phase looks very similar to a many-

body-localized phase, it raises the obvious question of how
the two are related. The underlying physics is different:
MBL is intrinsically a result of quantum interference,
whereas the nonergodic phase is more a consequence of
OðNÞ energy and entropy barriers. In that respect, it relates
more to the classical theory of glassiness in mean-field
systems.
The relationship to the mean-field spin-glass theory, and,

in particular, the replica theory [46,47], is potentially very
deep. Most prominent is the connection between our T� and
the “dynamical” transition temperature Td [27,32,53]. Below
Td, the Gibbs distribution concentrates around clusters in the
configuration space (although the equilibrium properties
may still be paramagnetic). The classical transition that
we identify at T� also corresponds to clustering in the
configuration space, even though we have obtained it by
independent means. The exact relationship between our
calculations and the standard canonical analysis remains to
be established, but, interestingly, Eq. (6) for the asymptotic-
in-p behavior of T� agrees exactly with Td in the literature
[54]. Furthermore, in Ref. [27], the authors studied Hp via
the replica theory and found an entire curve TdðΓÞ, which in
other models was shown to relate to real-time dynamics in
the presence of a heat bath [55]. That transition lies above the
nonergodic-ETH transition in Fig. 1; the connection between
the two is an interesting open question.
On that note, it was recently argued [56] that ergodicity

of eigenstates need not imply ergodicity of dynamics. It is
possible that the decay time of classical states might
diverge in the thermodynamic limit when T < T�, even
when the corresponding eigenstates are ergodic. If so, the
thermodynamic curve TdðΓÞ may describe the quench
behavior of Hp rather than eigenstate properties.
And, finally, the intracluster structure of the nonergodic

eigenstates may be very rich. The ultrametric structure of
Parisi’s solution [57] suggests that a cluster is organized
into subclusters, which themselves have subclusters, and so
on. The nonergodic phase may actually be many different
phases, with varying degrees of ergodicity breaking cor-
responding to how many levels of clusters the eigenstates
tunnel through, analogous to the physical picture of replica-
symmetry breaking.
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