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Bosonic symmetry protected topological (BSPT) states, the bosonic analogue of topological insulators,
have attracted enormous theoretical interest in the last few years. Although BSPT states have been
classified by various approaches, there is so far no successful experimental realization of any BSPT state in
two or higher dimensions. In this paper, we propose that a two-dimensional BSPT state with Uð1Þ ×Uð1Þ
symmetry can be realized in bilayer graphene in a magnetic field. Here the two Uð1Þ symmetries represent
total spin Sz and total charge conservation, respectively. The Coulomb interaction plays a central role in this
proposal—it gaps out all the fermions at the boundary, so that only bosonic charge and spin degrees of
freedom are gapless and protected at the edge. Based on the above conclusion, we propose that the bulk
quantum phase transition between the BSPT and trivial phase, which can be driven by applying both
magnetic and electric fields, can become a “bosonic phase transition” with interactions. That is, only
bosonic modes close their gap at the transition, which is fundamentally different from all the well-known
topological insulator to trivial insulator transitions that occur for free fermion systems. We discuss various
experimental consequences of this proposal.
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A symmetry protected topological (SPT) state, first
defined in Refs. [1,2], is the ground state of a local
quantum many-body Hamiltonian whose bulk is gapped
and nondegenerate, but whose boundary remains either
gapless or degenerate as long as the entire system including
the boundary preserves certain symmetries. Fermionic SPT
states include the familiar quantum spin Hall (QSH)
insulator [3,4], the three-dimensional topological insulator
[5–7], and topological superconductors. Noninteracting
fermionic SPT states have been fully classified and under-
stood [8,9]. Unlike fermionic systems, bosonic SPT
(BSPT) states require strong interaction to overcome the
tendency to form Bose-Einstein condensates. The simplest
and most well-known BSPT state is the one-dimensional
Haldane phase, which can be realized in the simplest nearest-
neighbor spin-1 Heisenberg chain [10,11]. However, higher
dimensional generalizations of BSPT states have not been
found. The only even potentially feasible experimental
proposal is for a bosonic integer quantum Hall state in
ultracold atoms [12], but even this seems far away, since as
yet experiments with both rotating traps and artificial
magnetic fields are still far from the quantum Hall regime.
The exactly soluble parent Hamiltonians constructed in
Refs. [1,2] in dimensions higher than 1 all involve high
order multiple spin interactions, and are thus unlikely to
exist in realistic materials. Up to now, all approaches to
classifying and characterizing BSPT states [1,2,13–16] rely
on mathematical or effective field theory descriptions, which
shed little light on how to identify a realistic candidate
BSPT state.

In the current paper, we hope to bridge the gap between
theoretical studies and experimental realizations of BSPT
states. We propose that bilayer graphene in magnetic field
(with both in-plane and out-of-plane components) provides
a platform of realizing and probing the two-dimensional
BSPT state with Uð1Þs ×Uð1Þc symmetry, where Uð1Þs
and Uð1Þc correspond to the total spin-Sz and total electric
charge conservation, respectively. Based on the formalism
developed in Refs. [14,15], this state has a Z classification;
i.e., with these symmetries there is an infinite set of
nontrivial two-dimensional BSPT classes, which are
indexed by an integer k. Effective field theory descriptions
of these BSPT states have been given in terms of Chern-
Simon field theory [14] and a nonlinear sigma model
(NLSM) with a Θ-term [15,17]. The action for the latter is

S ¼
Z

d2xdτ
1

g
ð∂μnÞ2 þ

iΘ
Ω3

ϵabcdna∂xnb∂ync∂τnd; ð1Þ

where n ¼ ðn1; n2; n3; n4Þ is a four component vector with
unit length [15,17], and Ω3 is the volume of a three-
dimensional sphere with unit radius. In Eq. (1), the BSPT
phases correspond to the strongly interacting fixed point
g → ∞, and Θ → 2kπ with nonzero integer k, while the
trivial phase corresponds to the fixed point Θ → 0. The
quantum phase transition between different BSPT phases is
driven by tuning Θ in Eq. (1), and the critical point is at
Θ ¼ ð2kþ 1Þπ. A similar phase diagram and renormaliza-
tion group flow for NLSMs in one lower dimension was
studied thoroughly in Refs. [18,19].
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Let us elaborate on our claim. It was proposed that an
out-of-plane magnetic field drives undoped graphene into a
“quantum spin Hall insulator” [20] (it is also called the
ferromagnetic quantum Hall state, since the bulk is fully
spin polarized. In order to avoid a canted antiferromagnetic
(CAF) phase, one also needs an in-plane magnetic field to
increase the Zeeman coupling [21,22], which is discussed
in detail in Supplemental Material [23]). In a bilayer, this
possesses at the Hartree-Fock level two channels of
counterpropagating spin-filtered helical fermionic edge
states [22,30]. However, when the Coulomb interaction
is included, we demonstrate that (as illustrated in Fig. 1),
the behavior is qualitatively modified to correspond pre-
cisely to that of the BSPT theories, Eq. (1) with k ¼ 1, so
that, although it is built from electrons, it is a proper BSPT
state in the following senses: 1. The Coulomb interaction,
which is expected to play an important role in this system,
induces a gap for all fermionic excitations at the boundary,
while bosonic charge and spin excitations remain gapless
and protected by the two Uð1Þ symmetries [Fig. 1(b)].
2. Using the Chalker-Coddington picture [31], the bulk
quantum phase transition between the nontrivial SPT phase
(k ¼ 1) and trivial (k ¼ 0) phase (hereafter phrased as
topological to trivial transition) can be described by
percolation of domains and the corresponding network
of interface or boundary states. Because the boundary only
has gapless bosonic modes, such a topological quantum
phase transition can occur while preserving the bulk gap for
fermionic quasiparticles. The topological to trivial transi-
tion can be driven by varying competing magnetic and
electric fields, and we propose that the bosonic scenario for
this quantum phase transition occurs with sufficiently
strong interactions. This is a qualitatively different situation
from the well-known topological to trivial transitions in
weakly correlated systems, such as the plateau transition
between integer quantum Hall states, or the transition
between normal and topological band insulators—these
transitions have a free fermion description that involves the
fermion gap closing in the bulk. The above statement is

supported by recent numerical studies of a similar model on
the bilayer honeycomb lattice [32,33].
We now proceed to an exposition of these results. For

noninteracting bilayer graphene, there are two channels of
helical edge states, described by the Hamiltonian

H0 ¼
Z

dx
X2
l¼1

ψ†
l;Liv∂xψ l;L − ψ†

l;Riv∂xψ l;R; ð2Þ

where l ¼ 1, 2 labels the channels, L, R denote the left- and
right-moving fermions, respectively, which also correspond
to electrons with spin up and down, and v is the Fermi
velocity [34]. The presence of some counterpropagating
edge states was deduced experimentally from nonlocal
transport signatures [22]. When the Coulomb interaction is
ignored, the boundary is a free fermion conformal field
theory (CFT) with central charge c ¼ 2.
The free fermion edge states can be bosonized into two

flavors of free bosons,

H0 ¼
Z

dx
X2
l¼1

v
2K

ð∂xθlÞ2 þ
vK
2

ð∂xϕlÞ2; ð3Þ

where ½θlðxÞ;∂x0ϕl0 ðx0Þ�¼iδðx−x0Þδll0 , andψ l;L=R∼eiθl�iπϕl .
For free one-dimensional fermions without interaction, the
Luttinger parameter K ¼ π.
Coulomb interactions Hint are conveniently handled in

the bosonization framework. Using the representation of
the fermion density nl ∼ ∂xϕl, one obtains

Hint ¼
Z

dx
X2
l¼1

Uintra

2
ð∂xϕlÞ2

þ Uinter∂xϕ1∂xϕ2 þHv; ð4Þ

where Uintra and Uinter represent intralayer and interlayer
forward-scattering interactions, respectively. Hv is an
anharmonic vertex term, and plays a central role here [35],

Hv ∼ α cosð2πϕ1 − 2πϕ2Þ: ð5Þ

Here we have assumed that the long range Coulomb inter-
action is screened to a short range one, but this is not essential.
Physically Hv describes the backscattering between two
channels of edge states, Hv∼ψ†

1;Lψ1;Rψ
†
2;Rψ2;L. The anhar-

monic Hv is relevant in the renormalization group sense, as
long as Uintra > Uinter. This condition is naturally satisfied
becauseUinter is suppressedby the square of thewave function
overlap between the two channels of edge states.
When it is relevant, Hv “pins” the bosonic mode ϕ− ¼

ðϕ1 − ϕ2Þ=2, causing large fluctuations of θ− ¼ θ1 − θ2,
leading to a gap in this antisymmetric sector, and also a gap
for all fermions at the boundary. The symmetric edge
modes ϕ ¼ ðϕ1 þ ϕ2Þ=2 and θ ¼ θ1 þ θ2, however,

FIG. 1. Schematic of bilayer graphene in the presence of a
magnetic field with both in-plane and out-of-plane components.
(a) Without interactions, the boundary hosts two channels of
fermionic edge states with total central charge c ¼ 2. (b) Includ-
ing the Coulomb interactions, there is only one gapless channel of
bosonic edge state with c ¼ 1.
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remain gapless, because θ transforms under symmetry
Uð1Þc, while ϕ transforms under Uð1Þs. It is straightfor-
ward to show—see below—that only physical operators
that create bosonic excitations can be built from the gapless
ϕ; θ fields, consistent with the statement that the boundary
has symmetry-protected gapless bosonic modes. The size
of the fermion gap at the boundary state is estimated in
detail in Supplemental Material.
The effective low energy theory that describes the

canonical conjugate modes ϕ and θ reads

~H ¼
Z

dx
~v

2 ~K
ð∂xθÞ2 þ

~v ~K
2

ð∂xϕÞ2: ð6Þ

Hence interaction reduces the central charge of the system
from c ¼ 2 to c ¼ 1. Because θ and ϕ transform non-
trivially [i.e., shift under Uð1Þc and Uð1Þs symmetries,
respectively], there are no anharmonic vertex operators
allowed by symmetry in Eq. (6). Because θ and ϕ are
“dual” to each other, a unit soliton of ϕ at the one-
dimensional boundary carries charge 2e, and a unit soliton
of θ carries spin Sz ¼ 1. The gaplessness of the boundary
state is protected by the Uð1Þc × Uð1Þs symmetry alone:
even if the translation symmetry of the boundary is broken
by disorder (which is inevitable in any real system), as long
as the Uð1Þc ×Uð1Þs symmetry is preserved, the boundary
must still remain gapless. The edge state in our system is
also very different from the cases studied in Refs. [36,37],
since in those systems the states localized at the domain
wall are unstable to disorder.
Here we note that although the bosonization of the edge

states of bilayer graphene in a magnetic field was also
studied in Refs. [38,39], in these works only the spin
symmetry was considered in the bosonization, and the
conclusion of Refs. [38,39] was that the system is equiv-
alent to a one-dimensional spin model. Here we stress that,
both the Uð1Þs and Uð1Þc symmetries are crucial to define
the BSPT state: i.e., if either of the Uð1Þ symmetries is
broken (for example if the bulk forms a canted antiferro-
magnetic order), the system becomes a trivial state. With
both Uð1Þ symmetries in our system, the boundary theory
Eq. (6) must remain gapless, and it can never be realized as
a one-dimensional system, but rather only as the boundary
of a two-dimensional system, which is an essential property
of all SPT states.
Let us discuss the operator content further. Assuming ϕ−

is pinned and θ− fluctuates strongly, one can obtain the low
energy components of the four component vector n in
Eq. (1),

n1 þ in2 ∼ ϵαβψ1;αψ2;β ∼ eiθ;

n3 þ in4 ∼
X
l

ð−1Þlψ†
l σ

þψ l ∼ ei2πϕ: ð7Þ

Here n1 þ in2 corresponds to an interlayer spin-singlet
(Sz ¼ 0) Cooper pair, while n3 and n4 correspond to

in-plane magnetic order. All components of the vector n
have power-law correlations at the boundary, and
their scaling dimensions are Δ½ϵαβψ1;αψ2;β� ¼ ð ~K=4πÞ,
Δ½Plð−1Þlψ†

l σ
þψ l� ¼ ðπ= ~KÞ. Thus we see that indeed

the low energy correlations at the edge all correspond to
bosonic fields, which could be built from elementary
bosons of even charge and integer spin. The presence of
four distinct “primary fields” is characteristic of the Wess-
Zumino-Witten (WZW) SUð2Þ1 CFT, which is well known
to be expressible in terms of a single gapless boson and has
c ¼ 1 [40,41]. The model in Eq. (6) is a deformation of
the usual SUð2Þ1 theory that reduces the symmetry to
Uð1Þc × Uð1Þs. It is also equivalent to a (deformed) Oð4Þ
NLSM with a k ¼ 1 WZW term—see, e.g., Ref. [42].
Equation (7) identified the effective bosonic degrees of

freedom that form a bosonic SPT state in the bulk. There
are two flavors of bosons carrying charge and spin quantum
numbers, respectively. Following the method of Ref. [43],
we can derive the wave function of the bosons in the bulk,
by calculating the following correlation function of the
boundary conformal field theory,

Ψðz1;z2 � � �w1;w2 � � �Þ∼
�Y

j

eiθðzjÞ
Y
k

e2πiϕðwkÞObg

�
; ð8Þ

where zj and wk are the complex coordinates in the two-
dimensional plane for the two flavors of bosons. This is
equivalent to calculating the partition function of a two-
dimensional Coulomb gas with both electric and magnetic
charges [44,45], and Obg represents a neutralizing back-
ground charge operator. The correlation function in Eq. (8)
can be evaluated with either Eq. (3) or Eq. (6), and the result
will be qualitatively the same,

Ψðz1; z2 � � �w1; w2 � � �Þ ∼ Normðzj; wkÞ
Y
j;k

ðzj − wkÞ; ð9Þ

where Normðzj; wkÞ only depends on the norm of zj − wk,
zi − zj and wi − wj, and contains all the dependence upon
the Luttinger parameters in Eqs. (3) and (6). This wave
function indeed represents a bosonic SPT state: it is
symmetric under interchange of identical zi or wj bosons,
and the two flavors of bosons view each other as a 2π-flux.
This mutual “flux attachment” picture is the very essence of
the BSPT state [46].
Knowing the effective field theory at the boundary is the

(1þ 1)-dimensional NLSM for n with a Wess-Zumino-
Witten term at level k ¼ 1; the bulk theory can be
constructed with the Chalker-Coddington network model
[31], and as was shown in Refs. [13,47], the bulk theory
obtained by this construction is precisely Eq. (1) with
Θ ¼ 2π. The physical meaning of this topological Θ-term
is that a vortex of ðn1; n2Þ, i.e., a vortex of the super-
conductor order parameter, which traps magnetic flux
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ðhc=2eÞ, carries spin Sz ¼ 1, which is perfectly consistent
with the physics of the bilayer QSH state.
It is worth contrasting with the case of a single layer

QSH insulator, in which the boundary cannot be driven into
a state with gapped fermions but gapless bosonic modes, as
long as theUð1Þc and time-reversal [orUð1Þs] symmetry of
the QSH insulator are preserved [48,49]. The mapping
between the fermionic QSH insulator and BSPT is only
valid for two copies of QSH insulators (which mathemati-
cally is equivalent to four copies of p� ip topological
superconductors), as was shown in Ref. [50].
By varying competing electric and magnetic fields

normal to the layer, a quantum phase transition can occur
between the BSPT and the trivial state in the two-
dimensional bulk. Using the Chalker-Coddington network
picture, one may construct a theory for the two-dimensional
bulk phase transition that involves only gapless bosonic
modes and retains the single-fermion gap. In the field theory
Eq. (1) this transition occurs whenΘ is tuned to π. Although
directly analyzing the bulk field theory atΘ ¼ π is difficult,
recent unbiased determinant quantum Monte Carlo simu-
lation on a similar bilayer honeycomb lattice interacting
fermion model confirms that this purely bosonic topologi-
cal-trivial quantum phase transition can indeed happen
[32,33], which is fundamentally different from the ordinary
topological to trivial transition in any free fermion system.
Maintaining the single particle gap requires strong inter-
actions, and other less interesting possibilities are possible
in experiment if correlations are not sufficiently strong, such
as intermediate phases between the BSPT phase and the
trivial phase. Nevertheless, a direct second order bosonic
transition like the one found in Refs. [32,33] seems allowed
and a quite interesting prospect.
Experimental implications.—The central prediction of

our theory is that in a bilayer graphene in the quantum spin
Hall phase [22], the gapless boundary modes are bosonic
rather than fermionic. The low energy charge carriers on
the edge are Cooper pairs ϵαβc1;αc2;β, with charge 2e.
Tunneling from a normal metal electrode or tip is predicted
to show a hard gap, despite ballistic, dissipationless in-
plane resistance. Conversely, tunneling from a supercon-
ducting tip should show zero gap.
A purely transport measurement is also possible using

shot noise, which has previously been used to probe
fractional charges in quantum Hall edge states [51–54].
By introducing a quantum point contact, either using
electrostatic gates or a nanoconstriction, edge-to-edge
backscattering is possible at that contact, with a finite
transmission probability [54]. Individual tunneling events
carry charge �2e, which is directly observable in the noise
spectrum. The detailed calculation about the shot noise in a
quantum point contact geometry has been presented in a
follow-up paper by some of the current authors [55].
Here we propose a different method to measure

the carrier charge at the boundary. Compared with the

point-contact geometry, our current proposal is easier to
implement experimentally, and more convenient to analyze
theoretically, as it only involves one edge instead of two
opposite edges. Our proposal is based on the dual-gated
geometry that has been used in experiments Ref. [22]. The
screened Coulomb interaction in our system can be tuned
by its distance d to the gates due to screening. The
competition between interaction and the Zeeman energy
can lead to a rich phase diagram, and when the interaction
is dominant, the system develops a CAF order [22]. The
size of the fermion gap at the boundary, as well as the
magnetic field required to realize the BSPT state in this
setup, is discussed in detail in Supplemental Material.
The stability of the edge states of our system relies on the

conservation of Sz, and if locally the Sz conservation is
broken, the edgemodes encounter backscattering, and hence
lead to noise of the current. We propose to screen the
Coulomb interaction for most of the sample, while leaving a
region close to the edge unscreened, in order to develop a
local CAF order, which serves as a local “magnetic impu-
rity" that breaks the Sz conservation. We calculate the
quantum shot noise in Supplemental Material with the
proposed setup Fig. 2, and recover the expected result,

~Sðω ¼ 0Þ ¼ 2e�hIi coth e�V
2kBT

: ð10Þ

e� ¼ 2e is the smoking gun signature of the BSPT state
proposed in our work.
If a direct second order quantum phase transition between

the BSPT and trivial phase found in Refs. [32,33] indeed
happens in a real system, then at the transition, which
corresponds to a (2þ 1)-dimensional CFT, the bulk con-
ductivity should be a universal value σ ¼ De2=h, whereD is
an order-1 universal constant [56,57]. Moreover the tran-
sition should be accompanied by a closing of the spin gap,

FIG. 2. Our proposed setup for measuring the carrier charge at
the boundary of our system. Most of the sample is screened by the
inner symmetric gates, while the unscreened region has a stronger
interaction that leads to a CAF order, and induces backscattering
of the edge states. We also add a pair of outer gates to control the
strength of interaction in the CAF region.
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with observable consequences for spin susceptibility as well
as thermal transport measurements.
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