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We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we
apply it to describe the orbital differentiation in strongly correlated electron systems starting from first
principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal
field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We
apply our theory to the archetypical nuclear fuel UO2 and show that the ground state of this system displays
a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ8 and extended Γ7

electrons.
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Orbital differentiation, where states with different orbital
character exhibit different levels of correlation, is a perva-
sive phenomena in condensed matter systems [1–4], which
gives rise to multiple functionalities in strongly correlated
multiorbital systems. In all known Mott systems in nature,
only a fraction of electrons form localized magnetic
moments, while the other electronic states are extended
(but away from the Fermi level). These systems are
commonly called “selective Mott insulators,” and the
transition into these states is called the “orbitally selective
Mott transition.” Understanding the mechanism driving the
selection process is a fundamental question in condensed
matter. This issue is especially nontrivial to address in low-
symmetry 5f electron systems, where the competition
between inter- and intraorbital interactions, the crystal field
splittings (CFSs), and the spin-orbit coupling (SOC) is very
complicated, as none of these energy scales are negligible.
Orbital differentiation is also a key issue in the presence of
disorder [5,6] and/or charge ordering (Wigner-Mott tran-
sitions [7]), where only a fraction of the electrons Mott
localize. Addressing these issues quantitatively and in an
unbiased “ab initio” fashion is very challenging. In this
Letter, we address the orbital differentiation problem from
an ab initio perspective using the rotationally invariant
slave boson (RISB) mean-field theory [8–10]. As we
demonstrate, this method can be derived from an exact
operatorial reformulation of the many-body problem,
which reproduces the Gutzwiller approximation [11] at
the mean-field level [12,13] and constitutes a starting point
to calculate further corrections. By exploiting the gauge
symmetry of the RISB theory, we build efficient systematic
algorithms which enable us to solve the mean-field equa-
tions and elucidate the pattern of orbital differentiation

even in low-symmetry 5f electron systems. We apply this
method to UO2 [14] (the most widely used nuclear fuel)
and provide new insight into the role of the CFSs in the
orbital differentiation and the nature of the chemical bonds
in this material.
The multiband Hubbard model.—Let us consider a

generic multiband Hubbard model:

Ĥ ¼
X

k

X

ij¼1;…;na

X

α¼1;…;Mi

X

β¼1;…;Mj

ϵαβk;ijc
†
kiαckjβ þ Ĥloc;

ð1Þ

where k is the momentum conjugate to the unit-cell label R,
the na atoms within the unit cell are labeled by i, j, and the
spin orbitals are labeled by α, β. As in Refs. [9,15], the local
interaction and the on-site energies are both included within
the definition of

Ĥloc ≡X

Ri

X

AB

½Hloc
i �ABjA;RiihB; Rij; ð2Þ

where jA; Rii are local Fock states,

jA; Rii ¼ ½c†Ri1�ν1ðAÞ…½c†RiMi
�νMi

ðAÞj0i; ð3Þ

and A ¼ 1;…; 2Mi runs over all of the possible lists of
occupation numbers fν1ðAÞ;…; νMi

ðAÞg. In particular, in
this work, we have used the Slater-Condon parametrization
of the on-site interaction [16].
Slave boson reformulation.—Here we derive the RISB

gauge theory and show that it constitutes an exact refor-
mulation of the generic Hubbard system defined above. As
in Ref. [9], we introduce a new set of fermionic modes
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ffRiaja ¼ 1;…;Mig that we call quasiparticle operators.
Furthermore, we introduce a bosonic mode ΦRiAn for
each couple of fermionic local multiplets ðjA; Rii; jn; RiiÞ
having equal number of electrons, i.e., NA ≡PMi

a¼1 νaðAÞ ¼ Nn ≡PMi
a¼1 νaðnÞ. Applying the algebra

generated by fΦ†
RiAng and ff†Riag to the vacuum j0i

generates a new Fock space HSB. We define the “physical
Hilbert space” hSB as the subspace of HSB satisfying the
following equations (Gutzwiller constraints):

K0
Ri ≡

X

An

Φ†
RiAnΦRiAn − Î ¼ 0; ð4Þ

KRiab ≡ f†RiafRib −
X

Anm

½F†
iaFib�mnΦ

†
RiAnΦRiAm ¼ 0; ð5Þ

where Î is the identity, ½Fia�nm ≡ hn; RijfRiajm;Rii, and
jn; Rii and jm;Rii are Fock states constructed as in Eq. (3)
but using the quasiparticle operators fRia.
In Ref. [15] it was shown that the following Hamiltonian

is an exact representation of Ĥ within hSB:

Ĥ ¼
X

kijαβ

ϵαβk;ijc
†
kiαckjβ þ

X

RiAB

½Hloc
i �AB

X

n

Φ†
RiAnΦRiBn; ð6Þ

where c†Riα ≡
P

aR̂Riaαf
†
Ria, and the operators

R̂Riaα ¼
X

AB

X

nm

½F†
iα�AB½F†

ia�nmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NAðMi − NBÞ

p Φ†
RiAnΦRiBm ð7Þ

are such that c†Riα are a representation in hSB of c†Riα. A
remarkable property of Ĥ is that it is invariant with respect
to the gauge Lie group generated by the Gutzwiller
constraint operators KRiab [see Eq. (5)]:

ei
P

Riab
θabKRiabĤe−i

P
Riab

θabKRiab ¼ Ĥ ∀ θ ¼ θ†: ð8Þ

In fact, Eq. (8) does not hold only within the subspace hSB
[which would be a trivial consequence of Eq. (5)] but in the
entire RISB Fock space HSB [17–23].
Operatorial formulation of RISB theory.—The operators

R̂Riaα defined above are constructed in such a way that c
†
Riα

are a representation in the physical RISB subspace of the
corresponding original fermionic operators c†Riα. However,
this construction is not unique. In particular, Eq. (7) can be
modified as follows:

R̂Riaα ¼ ∶
X

AB

X

nm

½F†
iα�AB½F†

ia�nmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NAðMi − NBÞ

p Φ†
RiAn½1̂þ X̂AB�ΦRiBm∶

ð9Þ

where “∶” indicates the normal ordering [24], and X̂AB is
any normally ordered algebraic combination of bosonic

ladder operators such that each term contains at least two
modes. In fact, since X̂AB is normally ordered and the
physical RISB states contain only one boson by construc-
tion [see Eq. (4)], the matrix elements of Eqs. (7) and (9) are
independent of X̂AB within hSB.
Of course, any choice of X̂AB in Eq. (9) would be

equivalent if we were able to solve Ĥ exactly. However, this
choice affects the RISB mean-field approximation (that we
are going to introduce below). Interestingly, it is possible to
construct X̂AB in such a way that (i) the RISB mean-field
theory is exact for any uncorrelated Hubbard Hamiltonian,
and (ii) the invariance property [Eq. (8)] of Ĥ with respect
to the gauge group remains valid. To the best of our
knowledge, this operatorial construction, which is derived
in the Supplemental Material of this Letter [17], was not
provided in any previous work.
RISB mean-field theory.—At zero temperature, the RISB

mean-field theory consists in minimizing the expectation
value of Ĥ with respect to jΨMFi ¼ jΨ0i ⊗ jϕi, where jΨ0i
is a Slater determinant constructed with the quasiparticle
operators fRia, jϕi is a bosonic coherent state, and the
Gutzwiller constraints [see Eqs (4) and (5)] are enforced
only in average.
It can be verified that taking the expectation value of

Eqs. (4) and (5) with respect to jΨMFi gives

Tr½ϕ†
iϕi� ¼ 1 ∀ i; ð10Þ

½Δpi�ab≡Tr½ϕ†
iϕiF

†
iaFib�¼ hΨ0jf†RiafRibjΨ0i ∀i; ð11Þ

where the matrix elements ½ϕi�An, which we call “slave
boson amplitudes,” are the eigenvalues of the annihilation
operators ΦRiAn with respect to jϕi. Similarly, it can be
verified that the expectation value of Ĥ with respect to
jΨMFi (normalized to the number of k pointsN ) is given by

E ≡ 1

N
hΨMFjĤjΨMFi ¼

X

i

Tr½ϕiϕ
†
i H

loc
i �

þ 1

N

X

kij

X

ab

½Riϵk;ijR
†
j �abhΨ0jf†kiafkjbjΨ0i; ð12Þ

where ½Ri�aα ≡ hϕjR̂Riaαjϕi is given by

½Ri�aα ¼ Tr½ϕ†
i F

†
iαϕiFib�½Δpið1 − ½Δpi�Þ�−

1
2

ba; ð13Þ

where 1 is the identity matrix, and R̂Riaα are the renorm-
alization operators represented in Eq. (9) and constructed
explicitly in the Supplemental Material [17]. The RISB
mean-field theory amounts to minimize Eq. (12) with
respect to jΨMFi while fulfilling Eqs. (10) and (11).
Advantages of the gauge invariant formulation.—As

shown in the Supplemental Material [17], the above-
constrained minimization problem can be conveniently
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cast analogously to Dynamical Mean Field Theory [25–27]
as a root problem for the variables ðRi; λiÞ, where Ri were
defined in Eq. (13), and λi are matrices of Lagrange
multipliers introduced in order to enforce the Gutzwiller
constraints [Eq. (11)]. These variables encode the so-called
“Gutzwiller self-energy” of each inequivalent atom, which
is defined as

ΣiðωÞ≡ ðI −R†
iRiÞðR†

iRiÞ−1ωþ ðR−1
i λiR

†−1
i Þ; ð14Þ

where Zi ≡R†
iRi are matrices of quasiparticle weights.

Let us represent formally the above-mentioned root prob-
lem as follows:

F ½ðR1; λ1Þ;…; ðRna ; λnaÞ� ¼ 0; ð15Þ

where na is the number of inequivalent atoms within the
unit cell. As shown in the Supplemental Material [17], each
evaluation of F requires us to solve na impurity models,
where the bath has the same dimension of the impurity for
each inequivalent atom [15]. An important advantage of
the present formulation with respect to Ref. [15] is that by
virtue of Eq. (8), Eq. (15) has a manifold of physically
equivalent solutions, which are mapped one into the
other by the following group of gauge transformations:
Ri → u†i ðθiÞRi, λi → u†i ðθiÞλiuiðθiÞ, where uiðθiÞ≡ eiθi
are generic unitary matrices. This property effectively
reduces the dimension of the root problem, which makes
the code more stable and speeds up the convergence by
reducing substantially the number of evaluations of F
necessary to solve Eq. (15). Remarkably, we found that
exploiting the gauge freedom mentioned above is essential
in order to study strongly correlated materials where the
SOC and the CFSs are equally important, which generally
makes the structure of ΣiðωÞ particularly complex [28].
Further technical details are discussed in the Supplemental
Material [17].
Calculations of UO2.—UO2 is widely used as a nuclear

fuel. At ambient pressure, it is a Mott insulator and
crystallizes in a cubic fluorite structure. Given the impor-
tance of this material, its electronic structure and energetics
have been extensively investigated both experimentally and
theoretically, e.g., with Density Functional Theory plus
U (DFTþU) [30–32] and other single-particle approaches
[33,34]. However, within these techniques it is not possible
to address the properties of the paramagnetic state of this
material, which is stable above the Néel temperature TN ≃
30.8 K [35]. Because of this reason, several Dynamical
Mean Field Theory studies of paramagnetic UO2 have been
recently performed [14,36–38]. A particularly important
statement concerning the orbital differentiation of the U-5f
electrons was made in Refs. [14,36], where it was observed
that the 5f5=2 states are Mott localized, while the 5f7=2
states are extended (but gapped). However, these studies
did not investigate how this conclusion is influenced by
the crystal field effects, which is the main goal of this

Letter. For this purpose, we perform charge self-consistent
DFTþ RISB simulations of paramagnetic UO2 taking
fully into account the CFSs. As in Ref. [15], we utilize
the DFT [39] code WIEN2K [40] and employ the Local
Density Approximation (LDA) and the standard “fully
localized limit” form for the double-counting functional
[16]. These calculations would have been prohibitive
without the algorithms derived in this work [17].
As in Ref. [36], here we assume that the Hund’s

coupling constant is J ¼ 0.6 eV. In the upper panel of
Fig. 1 are shown the LDA and LDAþ RISB total energies
EðVÞ obtained at zero temperature for U ¼ 10 eV [17]. The
corresponding pressure (P-V) curves obtained from PðVÞ ¼
−dE=dV are shown in the lower panel in comparison
with the experimental data of Ref. [41] (which were obtained
at room temperature). The RISB P-V curve and, in particu-
lar, the experimental equilibrium volume Veq ≃ 41 Å3=f:u:
compare remarkably well with the experiments. This favor-
able comparison with the experiments gives us confidence
that our theoretical approach is able to describe the ground-
state properties of this material. As shown in the
Supplemental Material [17], the P-V curve (and, in particu-
lar, the equilibrium volume) is essentially identical for
U ¼ 8 eV, which is the value assumed in Ref. [36].
Furthermore, reducing U from 10 to 8 eV does not influence
appreciably the electronic structure of UO2 at Veq [42].
In order to describe the orbital differentiation in UO2

taking into account the CFSs, it is necessary to decompose
the U-5f single-particle space in irreducible representations
of the double O point symmetry group [29,44] of the
U atoms. It can be shown that this repartition consists in:
1Γ6ð2Þ doublet, 2Γ7ð2Þ doublets, and 2Γ8ð4Þ quartets
[45]. These irreducible representations are generated by the
following states:

E 
(e

V
/f.

u.
)
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LDA+RISB
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)

V (Å 3/f.u.)
35 37.5 45 47.5
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0

10
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FIG. 1. Zero-temperature LDA and LDAþ RISB total energies
(upper panel) and corresponding pressure-volume phase dia-
grams compared with the room-temperature experiments of
Ref. [41] (lower panel).
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jΓ6;7=2;�i¼
ffiffiffiffiffiffiffiffiffiffi
5=12

p
j7=2;�7=2iþ

ffiffiffiffiffiffiffiffiffiffi
7=12

p
j7=2;∓1=2i;

jΓ7;7=2;�i¼∓ ffiffiffiffiffiffiffiffi
3=4

p
j7=2;�5=2i�

ffiffiffiffiffiffiffiffi
1=4

p
j7=2;∓3=2i;

jΓð1Þ
8 ;7=2;�i¼�

ffiffiffiffiffiffiffiffiffiffi
7=12

p
j7=2;�7=2i∓ ffiffiffiffiffiffiffiffiffiffi

5=12
p

j7=2;∓1=2i;
jΓð2Þ

8 ;7=2;�i¼∓ ffiffiffiffiffiffiffiffi
1=4

p
j7=2;�5=2i∓ ffiffiffiffiffiffiffiffi

3=4
p

j7=2;∓3=2i;
jΓ7;5=2;�i¼

ffiffiffiffiffiffiffiffi
5=6

p
j5=2;�3=2i−

ffiffiffiffiffiffiffiffi
1=6

p
j5=2;∓5=2i;

jΓð1Þ
8 ;5=2;�i¼

ffiffiffiffiffiffiffiffi
1=6

p
j5=2;�3=2iþ

ffiffiffiffiffiffiffiffi
5=6

p
j5=2;∓5=2i;

jΓð2Þ
8 ;5=2;�i¼j5=2;�1=2i; ð16Þ

which are expressed in terms of the conventional basis
of eigenstates of the total angular momentum (JJ basis).
By virtue of the Schur lemma [29], the entries of the U-5f
self-energy ΣðωÞ coupling states belonging to inequivalent
irreducible representations are equal to 0. However, the
total angular momentum J2 is not a good quantum number,
as the matrix elements of ΣðωÞ coupling the following
states are allowed: jΓ7; 5=2;�i with jΓ7; 7=2;∓i
jΓð1Þ

8 ; 5=2;�i with jΓð2Þ
8 ; 7=2;∓i and jΓð2Þ

8 ; 5=2;�i with

jΓð2Þ
8 ; 7=2;�i. Furthermore, the 5=2 and 7=2 states are not

degenerate [17]. Note that these CFSs are present because
of the crystal structure and would not exist if the environ-
ment of the U atom was isotropic.
The main goals of this work are (1) to show that the CFSs

affect substantially the electronic structure of UO2 and
(2) to describe and explain the pattern of orbital differ-
entiation of the U-5f electrons in this material.
In Table I are shown the eigenvalues of the 5f quasi-

particle matrix Z ¼ R†R obtained by taking into account
the CFSs and the corresponding orbital occupations. The
approximate results calculated by averaging over the CFSs
are also shown. The details of the averaging procedure are
described in the Supplemental Material [17]. We observe
that when the CFSs are taken into account, the selective
Mott localization occurs only within the Γ8 sector, while
the eigenvalues of Z of the other 5f degrees of freedom are
relatively large. More precisely, Z has four null eigenvalues
with Γ8 character. On the other hand, when the CFSs are

neglected [14,36], the Mott localization can only occur
within the entire 5=2 sector, which is 6-fold degenerate. It is
important also to observe that when the CFSs are taken into
account, the Mott-localized Γ8 states do not have a well-
defined total angular momentum J2. In fact, we found that
the eigenstates of Z with null eigenvalues are the following:

j1i≃ 0.939jΓð1Þ
8 ; 5=2;þi þ 0.343jΓð2Þ

8 ; 7=2;−i;
j2i≃ 0.939jΓð1Þ

8 ; 5=2;−i þ 0.343jΓð2Þ
8 ; 7=2;þi;

j3i≃ 0.939jΓð2Þ
8 ; 5=2;þi þ 0.343jΓð1Þ

8 ; 7=2;−i;
j4i≃ 0.939jΓð2Þ

8 ; 5=2;−i þ 0.343jΓð1Þ
8 ; 7=2;þi; ð17Þ

which have considerably mixed J2 character. A further
indication of the importance of the CFSs in UO2 is given by
the orbital occupations of the U-5f electrons. In fact, the
occupation corresponding to the Mott-localized 5f elec-
trons is 1.92, while the remaining 0.32 5f electrons are
extended (but gapped). Instead, when the CFSs are
neglected, the total number of Mott-localized 5f electrons
is 1.98, while the occupation of the extended 5f degrees of
freedom is only 0.16. The fact that the overall occupancy of
the 5f levels deviates considerably from an integer value
confirms the importance of covalency effects in UO2,
which has been pointed out also in previous experimental
and theoretical studies [46–49]. Note also that the Mott-
localized Γ8 degrees of freedom have occupancy close to
integer, which is a factor that is known to promote
localization [3].
Let us now address the question of what is the physical

origin of the strong CFSs orbital differentiation in UO2. The
first important observation is that the importance of the CFSs
splittings in UO2 is not related with the U-5f crystal fields
(on-site energy splittings) [2–4], which are very small in this
material (∼7 meV). In fact, a direct calculation shows that
neglecting the CFSs contributions to the on-site energy
splittings [17] does not affect sensibly any of the results
considered above (data not shown). Furthermore, we find
that the total energy of the approximate solution obtained by
averaging over the crystal fields is about 0.59 eV=f:u: higher
with respect to the solution where the CFSs are taken into
account, which is a much larger energy scale with respect to
the above-mentioned on-site energy splittings. These obser-
vations and the data in Table I indicate that the main physical
reason why it is essential to take into account the CFSs
concerns the above-mentioned covalent nature of the bonds
in UO2, i.e., the hybridization between the U-5f and the
uncorrelated electrons (in particular, the O-2p states). In
particular, we note that neglecting the CFSs implies (by
construction) that the jΓ7; 5=2;�i electrons are Mott local-
ized, which leads to an underestimation of the contributions
to the energy arising from the hybridization of these
electrons with the O-2p bands. On the other hand, taking
into account the CFSs enables us to capture the fact that the

TABLE I. Eigenvalues of the 5f quasiparticle matrix Z and
corresponding orbital occupations for LDAþ RISB calculations
atU ¼ 10 eV. Theoretical results obtained by taking into account
the crystal field splittings and by neglecting them.

With CFSs Γ8ð4Þ Γ7ð2Þ Γ8ð4Þ Γ7ð2Þ Γ6ð2Þ
Z 0 0.92 0.92 0.95 0.95
n 1.92 0.14 0.08 0.06 0.04

Without CFSs 5=2 7=2

Z 0 0.96
n 1.98 0.16
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hybridization of the Γ7 electrons is larger with respect to the
Γ8 localized states [37].
More details about the electronic structure of UO2 are

reported in the Supplemental Material [17].
In summary, we have derived an exact RISB reformu-

lation of the multiband Hubbard model, which establishes
the foundation of the mean-field approximation and
constitutes a starting point for calculations beyond
mean-field. The gauge invariance of our theory has
resulted also in substantial algorithmic advancements,
which make it possible to study from first principles
the energetics and the electronic structure of strongly
correlated materials taking into account simultaneously
electron correlations, SOC and CFSs. By utilizing our
theoretical approach, we have performed first principles
calculations of the orbital-selective Mott insulator UO2,
finding good agreement with available experimental data.
Furthermore, we have demonstrated that taking into
account the CFSs is essential in order to capture the
correct pattern of orbital differentiation between the U-5f
states and that the main physical reason underlying the
CFSs orbital differentiation in UO2 is not the contribution
of the crystal field on-site energies (which is essentially
negligible), but concerns the hybridization between the
U-5f and the O-2p electrons [37], which originates
covalent bonds in this material [46–49]. The strong
orbital differentiation between the Γ8 and the Γ7 electrons
could be directly detected experimentally, e.g., by means
of angle-resolved photoemission techniques [50,51],
which would enable us to discriminate between the
spectral contributions of the different states based on
their symmetry properties. In particular, based on the
orbital occupations of Table I and the Friedel sum rule,
we predict that the 5f spectral weight [52,53] below the
Fermi level has mostly Γ8 character—while it would have
also a substantial Γ7 contribution if the CFSs orbital
differentiation was a negligible effect. The analysis
presented here is very general and could be applied also
to other f electron systems, e.g., to materials displaying
strong magnetic anisotropy or more general forms of
multipolar order [54].
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