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The flagellar beat is extracted from human sperm digital imaging microscopy and used to determine the
flow around the cell and its trajectory, via boundary element simulation. Comparison of the predicted cell
trajectory with observation demonstrates that simulation can predict fine-scale sperm dynamics at the
qualitative level. The flow field is also observed to reduce to a time-dependent summation of regularized
Stokes flow singularities, approximated at leading order by a blinking force triplet. Such regularized
singularity decompositions may be used to upscale cell level detail into population models of human sperm
motility.
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Introduction.—The flagellum is a moving whiplike cel-
lular appendage found on numerous protozoa and the
spermatozoa of almost all species. In particular, the subject
of male subfertility has led to extensive quantitative studies
of human spermmotility [1–4],while even single cell studies
can generate extensive information, in particular, from
digital imaging microscopy. However, the tools for examin-
ing human sperm digital imaging microscopy are founded
from an era where only the cell body, and not the flagellum,
could be readily resolved [1,2].Apart from some simulations
of velocity magnitude [5] and surface attraction [6], there
is relatively less detailed characterization of the fluid
dynamics associated with the human sperm flagellar beat.
More extensive characterization of the fluid dynamics of

other flagellates is available. For instance, flows have been
reconstructed from the flagellar waveform for the algae C.
reinhardtii, using numerical simulation [7,8], though val-
idation of simulations to actual swimmer dynamics has
been limited to the approximation of resistive force theory
[9] and required resistance coefficients that varied exten-
sively between different sperm. Furthermore, flows around
microswimmers have been measured using micro-particle
image velocimetry for Gardia protozoan flagellates [10],
though reported with limited resolution. Analogous studies
have been pursued for C. reinhardtii, though reported with
an averaging, either temporal or spatial, [11,12] or in a
single plane [12,13]. Such simplifications in the reported
data particularly emphasize the need to simplify the
velocity flow fields, even in focused studies.
Principal component analysis (PCA) has been used to

reduce the dimensionality of flagellar data [14,15], though

such approaches have not been applied to the associated
flow fields generated by the flagellum beat, despite the
complexity of these data sets. Instead, a small number of
viscous flow singularities have been used to approximate
time-averaged microswimmer flows (e.g., [11]) and are
popular since singularity flows have a clear theoretical
interpretation as the first terms of a multipole expansion.
However, temporal averaging may be ill advised [8], since
the time dependence of microswimmer flows persists on
length scales associated with cell-cell hydrodynamic inter-
action, increasing the complexity of information that needs
to be retained.
Thus, the primary objective of this Letter is to demon-

strate that it is possible to systematically reduce the flow
field associated with a swimming human sperm in terms of
a time-dependent superposition of regularized viscous flow
singularities, via an intermediate PCA analysis of the flow
field. In turn, this has prospective use as a framework for
facilitating theoretical interpretation and investigation. In
the intermediate steps of these procedures, we digitize the
flagellar waveform and use boundary element simulation to
determine the fluid flow surrounding the sperm, which will
also generate predictions for the cell trajectory. Thus, en
route to the singularity representation of the flow field, we
will also have the objective of comparing predictions for
the human sperm trajectory with observation, to assess both
the use of digitized flagellar waveforms and numerical
simulation for predicting fine-scale human sperm motility
at the qualitative level. Once the singularity representation
of the flow field has been obtained, our final objective will
be to analyze the representation in terms of concepts from
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dynamical systems theory to consider potential insights
concerning the dynamics of human sperm swimming and
the flows it induces.
Imaging.—The experimental methodology is further

detailed in Smith et al. [3]. In summary, human sperm
samples were collected from a normozoospermic research
donor; sperm that had penetrated approximately 2 cm into a
capillary tube containing a saline medium were imaged in
the region of cell accumulation approximately 10–20 μm
from the capillary tube inside surface (Supplemental
Material, Movie 1 [16]). The imaging was conducted with
an Olympus (BX-50) microscope with halogen illumina-
tion and a positive phase contrast lens (20 × =0.40∞=0.17
Ph1 together with a depth of field of approximately 5.8 μm)
and a Hamamatsu Photonics K.K. C9300 CCD camera
at 292 frames per second, streaming data directly to a
Dell Dimension workstation, running Wasabi software
(Hamamatsu Photonics).
A time sequence of flagellar position data in the micro-

scope focal plane was extracted from the imaging data,
using customMATLAB

© software [3]. This analysis provided
the angle ψðs; tÞ, between the local tangent of the flagellum
and the sperm head, with s denoting the arclength along the
flagellum from the proximal to the distal end, and with t
denoting time. The extracted flagellar waveform contains
more than six flagellar periods [Figs. 1(a) and 1(b)], with a
primary beat and a series of smaller undulations in the
proximal region possessing an approximately threefold
higher frequency, as reported in Smith et al. [3].
Reconstruction of the flagellar waveform.—Following

the shape analysis of bull spermatozoa by Ma et al. [14], as
reviewed in Ref. [15], we implemented PCA for the angle ψ
to determine a flagellar shape decomposition. In particular,
with the arclength discretized into m values, s1;…; sm, and
time discretized into n values, t1;…; tn, we have the angle
matrix ψ iα ¼ ψðti; sαÞ, and its temporal average ψ̄ iα ¼
ð1=nÞPn

p¼1 ψpα for any i ∈ f1;…; ng.
The eigenvectors of the m ×m covariance matrix,

Sαβ ¼ ð1=nÞPn
i¼1ðψ iα − ψ̄ iαÞðψ iβ − ψ̄ iβÞ, provide a basis

for the flagellar wave, with m eigenvectors, fa1;…; amg,
ordered by the size of the associated eigenvalues
λ1 ≥;…;≥ λm. Each eigenvector corresponds to a set of
angles that define a flagellum shape, and the first three
eigenvectors, also known as PCA modes and associated
with eigenvalues λ1;…; λ3, are plotted in Fig. 1(c). In
particular, the first two PCA modes capture 95.9% of the
cumulative variance, that is ðλ1 þ λ2Þ=traceðSÞ ¼ 0.959,
while the first three capture 99.3%. Thus, respectively,
there is a 4.1% and 0.7% variation in the flagellar shape that
is not accounted for in projecting the flagellar data for all
arclength and time onto the span of these PCA modes,
demonstrating data reduction with limited sacrifice in
accuracy.
The time-dependent coefficients when expressing the

flagellar angle as a summation of PCA modes also define

trajectories in the PCA phase shape space; for the expan-
sion in the first two modes, this yields dumbbell-like
trajectories, as plotted in Fig. 1(d). By mapping the
time-dependent trajectory in the phase space with a phase
parameter [14,19], a phase space limit cycle can be
determined, as given by the red curve in Fig. 1(d), and
will be used below to provide a characteristic waveform for
the human sperm.
Boundary elements and the swimming trajectory.—The

fluid flow field around the sperm and its predicted
trajectory were determined via boundary element methods
(BEM) [20] (Supplemental Material, Movie 2 [16]). The
computational human spermatozoon has a prolate ellipsoid
head connected to a cylindrical flagellum, as shown in
Fig. 1(a). The waveform is reconstructed using the three-
dimensional phase space limit cycle in Fig 1(d).
Before considering the velocity vector field, we compare

the predicted and observed sperm trajectory. Surprisingly,
despite the fact that the two-dimensional PCA mode
expansion loses only 4.1% of the waveform variance,
the resulting swimming trajectory fails to capture character-
istics of sperm yawing, as displayed in Fig 2. When the
limit cycle associated with the first three PCA modes is
used for the waveform, the predicted swimming trajectory
compares substantially better with observation, although
the overall progressive speed is generally lower (Fig. 2),
emphasizing a sensitivity of the hydrodynamics to small
changes in the flagella beat pattern. Including the presence

FIG. 1. Sperm flagellar waveform and its reconstruction.
(a) Flagellar reconstruction using three PCA modes. (b) Flagellar
tangent angle, ψðs; tÞ. Note that approximately 10% of the distal
flagellum data are lost during image capture. (c) The first three
PCA modes of the flagellum angle, ψ , where ψ̄ is the temporal
average of the angle. (d) The trajectory of the first two PCA mode
coefficients (blue), with the associated limit cycle orbit, in the
phase space (red).
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of a nearby wall also marginally increases the numerical
swimming speed, highlighting the hydrodynamic influence
of nearby no-slip boundaries. The system is also prone to
other sources of error: the precise height of the sperm from
the cover-slip is not available while, in addition, small 3D
flagellar movement inducing nonplanar motions near the
distal flagellar tip are not captured. Despite these empirical
uncertainties, the overall qualitative agreement between the
BEM calculation and observation demonstrates that both
simplified three-mode PCA approximation and numerical
simulation can be used for understanding and predicting
fine-scale sperm motility at the qualitative level.
Velocity field around a spermatozoon.—For simplicity,

the BEM calculations for the fluid velocity field relative to
the sperm head-tail junction are considered with no external
boundaries and are presented in Fig 3 and the Supplemental
Material, Movie 3 [16]. The time-averaged velocity field in
the near and far field of the flagellar beat plane (xy plane),
and in a plane perpendicular to the beat plane (x ¼ 0 plane)
is shown in Fig. 3 with its magnitude decaying like r−2 in

the far field [Fig. 3(a)], with r the distance from the head
neck junction. This is expected since the swimmer is force
free, and thus, the leading term in a multipole expansion of
the flow field is λGd, where Gd is a Stokeslet dipole. The
sign of λ classifies the swimmer as a pusher (λ > 0) or,
conversely, a puller, and fluid moving away from the cell
along its long axis in Fig. 3 demonstrates that λ > 0; hence,
unsurprisingly, the time-averaged swimming of the sperm
corresponds to a pusher [6].
Singular decomposition of the flow.—Before attempting

to summarize the spatial-temporal fluid velocity field from
the BEM calculation in terms of Stokes-flow singularities,
PCA is used to reduce complexity. Once more, we have n
time values, t1;…; tn, and with m the number of mesh
points in a spatial discretization, let α ∈ f1;…; 3mg index
the set ðeq1ðαÞ;xq2ðαÞÞ where, respectively, q1ðαÞ ∈
f1; 2; 3g is the axis associated with α, and q2ðαÞ ∈
f1;…; mg is the mesh point associated with α. Then, with
uiα ¼ eq1ðαÞ · uðti;xq2ðαÞÞ, and the velocity field temporal
average ūiα ¼ ð1=nÞPn

p¼1 upα for any i ∈ f1;…; ng, PCA
can be implemented for the 3m × 3m covariance
matrix Svelαβ ¼ ð1=nÞPn

i¼1ðuiα − ūiαÞðuiβ − ūiβÞ.
In Fig. 4(a), the first five PCA modes are depicted,

and the cumulative variance is close to one for the first
five terms of a PCA mode expansion, as shown in
Fig. 4(b). While Klindt and Friedrich [8] suggest using
unsteady Stokes singularities in multipole expansions, we
approximate the steady PCA modes with Stokeslets,
though these are regularized [21] in order to avoid actual
singularities. Hence, for the velocity field of PCA mode s,

we consider ~usðxÞ ¼ P
K
k¼1 f

ðs;kÞ · Gϵðs;kÞ ðx; xðs;kÞ0 Þ, where
Gϵ ¼ ½ðr2 þ 2ϵ2ÞI þ rr�=ðr2 þ ϵ2Þ3=2 is the regularized

Stokeslet [21], with r ¼ x − xðs;kÞ0 , r ¼ jrj, and I denoting
the identity tensor. The position of each singularity xðs;kÞ,
the associated magnitude f ðs;kÞ and regularization parameter
ϵðs;kÞ are calculated via least-square fitting. We use the
minimal number of singularities that provide a reasonable
fit for each flow PCA mode, in this case K ¼ 3, 3, 4, 6, 5
for the lowest five modes. The coefficients for the Stokeslet
decomposition are provided in the Supplemental
Material [16].
For each time point i ∈ f1;…; ng, projecting the 3m

dimensional vector uiα of the original velocity field onto the
span of the velocity vectors ~usα ¼ eq1ðαÞ · ~u

sðxq2ðαÞÞ, s ∈
f1;…; Kg generates an approximation of the velocity field.
With uK�iα denoting the projected 3m dimensional vector at
time point i, one can generate a covariance matrix,
S�Kαβ ¼ ð1=nÞPn

i¼1ðu�Kiα − ū�Kiα Þðu�Kiβ − ū�Kiβ Þ, with the tem-
poral average ū�Kiα defined analogously to the average of the
observed velocity field. Then, traceðS�KÞ=traceðSvelÞ gives
the proportion of the variance in the original flow captured
by the K-level regularized Stokeslet approximation, as
plotted in the inset of Fig. 4(b). Furthermore, the lowest

FIG. 3. The time-averaged fluid flow around a human sperm.
The flagellum length is L ¼ 50 μm and the beat period is
T ≈ 0.42 sec. The velocity magnitude is given in units of
L=T. (a) The time-averaged far-field flow in the beating plane
(xy plane). (b) The time-averaged near-field flow. (c) The time-
averaged near-filed flow in x ¼ 0 plane, perpendicular to the
beating plane. Streamlines are also depicted in white.

FIG. 2. Observed and predicted sperm head trajectories for
different PCA mode truncation. The overall swimming direction
is indicated by the arrow. Upper left inset shows the BEM virtual
sperm swimming near a solid boundary (Supplemental Material,
Movie 2 [16]).
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two flow PCA modes are each well approximated by a
regularized force triplet, with no net force and consisting
of one lateral force, together with a force at the sperm
head and one near the distal flagellar tip, as summarized in
Fig. 4(c). In particular, the force triplet 1 is associated with
flow PCAmode 1, whereas force triplet 2 is associated with
flow PCA mode 2 in Fig. 4(a).
The time-dependent coefficients of two triplet bases are

shown in Fig. 4(d). One can observe, from Fig. 4(b), that
these modes capture about 68% of the cumulative variance
to provide an overall view of the flow field and, similarly,
for the corresponding force triplet, even if finer details are
not represented. This figure is augmented to 90% if five
modes are considered, instead [inset in Fig. 4(b)]. At point
1 in the phase plane in Fig. 4(d), which also corresponds to
t=T ≈ 0 in the time evolution in Fig. 4(d) lower figure, the
flow is essentially that of PCA mode 2, or the equivalent
force triplet, with a negative coefficient. Hence, the fluid is
moving away from the sperm along its long axis, and thus,
the sperm is a pusher at this point. En-route to point 2 in the
PCA phase portrait in Fig. 4(d), the flow evolves to one
with essentially no contribution from force triplet 2 and
with the coefficient of force triplet 1 becoming increasingly
positive. Hence, at point 2, the fluid is moving from the
sperm along its long axis and the sperm is now a puller.
On transitioning to point 3 in the phase plane, the flow
field reverses, so that force triplet 1 acquires a negative
coefficient, and the sperm is a pusher once more. These
changes in the coefficients of the force triplets during
this evolution along the phase plane orbit are given in
Fig 4(d), bottom plot, with the further changes in the

coefficients also depicted as the beat cycle passes through
point 4, where the sperm is a puller, and then back to
point 1, to complete the orbit. The regularized Stokeslet
parameters and time-dependent coefficients for the lowest
five PCA modes of the velocity field are available in the
Supplemental Material, Fig. 1 [16].
With this breakdown of the beat cycle from the system-

atic reduction of the flow field, one has that the sperm
continually switches between pusher and puller modalities,
as previously observed for C. reinhardtii [8]. In addition,
the crosslike structure of the PCA phase portrait orbit in
Fig. 4(d) emphasizes that one of the PCA modes, or its
associated force triplet, is always essentially off, as also
highlighted in Fig. 4(e). This structure and temporal
dependence is directly analogous to that of the blinking
Stokeslet [22], and with the coefficient approximation
indicated in Fig. 4(e), the leading order flow is that of a
blinking regularized force triplet. In addition, we note that
the systematic reduction not only reveals the blinking as an
emergent feature, but also automatically determines how
improved accuracy can be achieved via additional regular-
ized singularities.
Finally, while we observed, in Fig. 2, that boundary

effects only perturb the predicted trajectory and, hence, our
simplification of neglecting external boundaries for the
above velocity field study, it is, nonetheless, recognized
that the fluid flow close to a no-slip boundary is nontrivially
modified [23]. Hence, we have also considered BEM
simulations for the case of a spermatozoa swimming
parallel to a wall with a height of z ¼ 0.3 L ∼ 15 μm.
The resulting flow field can still be decomposed into a

FIG. 4. (a) The first five PCA modes of the time-dependent fluid velocity field, with same units used in Fig. 3. (b) The associated
contribution rate of the PCAmodes of the velocity field. The inset depicts the cumulative variance of the PCAmodes and the regularized
Stokeslet approximations. (c) Force triplet approximation for the first two PCA modes of the velocity field. The size and direction of the
arrows give the location, magnitude, and direction of the force singularities. The circle radius corresponds to the regularization
parameter, ϵ. (d) Top. The upper plot shows the phase space of the first two PCA modes of the velocity field, with color changing with
increasing time (blue to yellow). The numbers 1–4 match the labels of (d) lower figure, which shows the time-evolution of the
coefficients derived from the regularized force triplet approximation, nondimensionalized by the beat period T. (e) The associated
dynamical system approximation of the blinking force triplet, as presented in (d).
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small number of PCA modes and regularized singularity
approximations that capture essentially as much of the
variance as the results with no external boundaries, as can
be observed by comparing Fig. 2 and Fig. 4(b) in the
Supplemental Material [16]. Thus, the use of PCA modes
and singularity expansions to summarize, and further
explore, the flow field induced by a sperm also retains
accuracy in the vicinity of a no-slip boundary despite the
added hydrodynamic complexity.
Summary and conclusions.—We have digitized a swim-

ming human sperm beat pattern using its associated limit
cycle in a phase space of PCA modes to determine the flow
field round the sperm via boundary element numerical
simulations. We have also shown that the fluid flow
surrounding the cell can be systematically decomposed
into a small number of regularized Stokeslets with time
dependent coefficients, and the core features of the flow
field can be approximated by a blinking regularized force
triplet. This decomposition also highlights that, while the
sperm head is, on average, pushed by its flagellum, it is also
periodically pulled backwards and sideways, as reflected in
the observed and predicted swimming trajectories. The
general qualitative agreement between observed and pre-
dicted trajectories also demonstrates that both simulation
and the digitized waveforms can be used for making
theoretical predictions about fine-scale human sperm
swimming. Finally, we note that the ability to use a small
number of regularized singularities to summarize the flow
field, including complexities such as the presence of a no-
slip boundary, provides a methodology for coarse graining
the time-dependent flow around a human sperm for use in
developing population level models that retain individual
cell dynamics.
Data accessibility.—All data created during this

research are openly available by following the link
in Ref. [24].

K. I. acknowledges support from the Kyoto University
Hakubi Project and the Supporting Program for
Interaction-based Initiative Team Studies (SPIRITS).
D. J. S. and J. K. B. acknowledge MRC Special
Training Fellowship No. G0600178. The authors
acknowledge the major contribution of the late

Professor John Blake in fostering the research collabora-
tion which led to this work.

[1] S. Mortimer and M. Swan, Hum. Reprod. 10, 873 (1995).
[2] S. Mortimer, D. Schëväert, M. Swan, and D. Mortimer,

Hum. Reprod. 12, 1006 (1997).
[3] D. Smith, E. Gaffney, H. Gadêlha, N. Kapur, and J.

Kirkman-Brown, Cell Motil. Cytoskeleton 66, 220 (2009).
[4] E. Ooi, D. Smith, H. Gadêlha, E. Gaffney, and J. Kirkman-

Brown, J. Roy. Soc. Open Sci. 1, 140230 (2014).
[5] E. Gaffney, H. Gadêlha, D. Smith, J. Blake, and J. Kirkman-

Brown, Annu. Rev. Fluid Mech. 43, 501 (2011).
[6] D. J. Smith and J. R. Blake, Math. Sci. 34, 74 (2009).
[7] S. O’Malley and M. Bees, Bull. Math. Biol. 74, 232 (2012).
[8] G. Klindt and B. Friedrich, Phys. Rev. E 92, 063019 (2015).
[9] B. Friedrich, I. Riedel-Kruse, J. Howard, and F. Julicher, J.

Exp. Biol. 213, 1226 (2010).
[10] S. Lenaghan, C. Davis, W. Henson, Z. Zhang, and M.

Zhang, Proc. Natl. Acad. Sci. U.S.A. 108, E550 (2011).
[11] K. Drescher, R. Goldstein, N. Michel, M. Polin, and I.

Tuval, Phys. Rev. Lett. 105, 168101 (2010).
[12] G. S. Klindt, C. Ruloff, C. Wagner, and B. M. Friedrich,

Phys. Rev. Lett. 117, 258101 (2016).
[13] J. Guasto, K. Johnson, and J. Gollub, Phys. Fluids 23,

091112 (2011).
[14] R. Ma, G. Klindt, I. Riedel-Kruse, F. Jülicher, and B.

Friedrich, Phys. Rev. Lett. 113, 048101 (2014).
[15] S. Werner, J. C. Rink, I. H. Riedel-Kruse, and B. M.

Friedrich, PLoS One 9, e113083 (2014).
[16] See Supplemental Material http://link.aps.org/supplemental/

10.1103/PhysRevLett.118.124501 for regularized singular-
ity decomposition coefficients and movies associated with
this Letter, which includes Refs. [17,18].

[17] J. Ainley, S. Durkin, R. Embid, P. Boindala, and R. Cortez,
J. Comput. Phys. 227, 4600 (2008).

[18] D. J. Smith, Proc. R. Soc. A 465, 3605 (2009).
[19] B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky,

and R. Mrowka, Phys. Rev. E 77, 066205 (2008).
[20] K. Ishimoto andE. A.Gaffney, J. Theor.Biol.360, 187 (2014).
[21] R. Cortez, SIAM J. Sci. Comput. 23, 1204 (2001).
[22] J.Blake andS.Otto, Theor. Comput. FluidDyn.10, 23 (1998).
[23] D. J. Smith, E. A. Gaffney, J. R. Blake, and J. C. Kirkman-

Brown, J. Fluid Mech. 621, 289 (2009).
[24] University of Oxford Archive: https://doi.org/10.5287/

bodleian:1Zvzab18P.

PRL 118, 124501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

24 MARCH 2017

124501-5

http://dx.doi.org/10.1093/oxfordjournals.humrep.a136053
http://dx.doi.org/10.1093/humrep/12.5.1006
http://dx.doi.org/10.1002/cm.20345
http://dx.doi.org/10.1098/rsos.140230
http://dx.doi.org/10.1146/annurev-fluid-121108-145442
http://dx.doi.org/10.1007/s11538-011-9673-1
http://dx.doi.org/10.1103/PhysRevE.92.063019
http://dx.doi.org/10.1242/jeb.039800
http://dx.doi.org/10.1242/jeb.039800
http://dx.doi.org/10.1073/pnas.1106904108
http://dx.doi.org/10.1103/PhysRevLett.105.168101
http://dx.doi.org/10.1103/PhysRevLett.117.258101
http://dx.doi.org/10.1063/1.3640006
http://dx.doi.org/10.1063/1.3640006
http://dx.doi.org/10.1103/PhysRevLett.113.048101
http://dx.doi.org/10.1371/journal.pone.0113083
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.124501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.124501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.124501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.124501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.124501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.124501
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.124501
http://dx.doi.org/10.1016/j.jcp.2008.01.032
http://dx.doi.org/10.1098/rspa.2009.0295
http://dx.doi.org/10.1103/PhysRevE.77.066205
http://dx.doi.org/10.1016/j.jtbi.2014.06.034
http://dx.doi.org/10.1137/S106482750038146X
http://dx.doi.org/10.1007/s001620050049
http://dx.doi.org/10.1017/S0022112008004953
https://doi.org/10.5287/bodleian:1Zvzab18P
https://doi.org/10.5287/bodleian:1Zvzab18P
https://doi.org/10.5287/bodleian:1Zvzab18P
https://doi.org/10.5287/bodleian:1Zvzab18P

